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Abstract

Assessing the systemic risk a bank poses to the system has become a central part in regulating its capital
requirements (e.g. the bu↵er for global or domestic systemically important banks). As with conven-
tional risk types, systemic risks need to be quantified. Currently global regulators propose a range of
bank-specific indicators that measure size and interconnectedness to proxy systemic risk. In this study
we gauge the capacity of such indicators to explain contagion losses triggered by realizations of sizeable
idiosyncratic shocks. We study contagion impact through di↵erent channels, separating these e↵ects into
first-round, nth-round, asset fire sale and mark-to-market losses. We evaluate the predictive power of
models selected by best-subset selection and Lasso by applying 10-fold panel cross validation. We pro-
vide constructive proofs for the existence of clearing payment vectors and associated market equilibria
for these contagion channels in a model of interlinked balance sheets. We provide algorithms that con-
verge to the greatest market equilibrium in a finite number of steps. Our empirical results suggest that the
Basel III indicator set performs well in comparison to alternative data sets of bank-specific indicators. We
also find, however, that the proposed data sets without bank dummies do not perform well in capturing
the relevance of the average network position for predicting contagion e↵ects.
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1. Motivation

A key topic in financial regulation is the negative externality that is not taken into account by banks in
their risk level choice. Failing banks can become a large burden to the financial system, the government
and ultimately the tax payer. Laeven and Valencia (2010) summarize the cost of banking crises between
1970 and 2006 as follows: (i) direct fiscal costs are around 10% of GDP, (ii) the increase in public debt
is around 16% of GDP and (iii) output losses are on average 19.5% of GDP. Honohan and Klingebiel
(2000) provide similar figures. Not surprisingly, regulators have responded and require large banks that
would cause particularly high losses to the system to hold additional capital bu↵ers in order to reduce
their probability of failure.

The academic approach to quantifying systemic risk was shaped by contributions from Acharya et al.
(2010), which was developed into SRisk (see Brownlees and Engle (2015)), and by Adrian and Brunner-
meier (2016), who introduced the �CoVaR concept. In a nutshell, SRisk quantifies the capital shortfall
of a bank given a strong market decline and �CoVaR estimates the value-at-risk (VaR) of the system as a
whole when a particular bank faces distress, i.e. experiences a tail event.

However, while both concepts are used as part of a broader supervisory toolkit, supervisors employ
simpler concepts when it comes to the quantification of capital add-ons on large institutions whose failure
poses a risk to the whole system (see e.g. BIS (2012), BIS (2013), FED (2015), EBA (2014)). Why do
practitioners choose a di↵erent path than academia?

There are several reasons. Most importantly, both SRisk and �CoVaR require that the bank is publicly
listed. However, this is only true for 22% of banks in the US, 4% in the UK, 3% in France and as
little as 1% in Germany.3 Certainly, listed banks tend to be the larger institutions, but there are notable
exceptions in many countries, e.g. large Landesbanken in Germany, or cooperative banks. This leads
to a situation where supervisors cannot employ SRisk or �CoVaR for the whole banking system, which
would however be necessary if they were to be connected to capital add-ons. Furthermore, time series
are needed for reliable estimation of SRisk and �CoVaR4, which may further reduce the sample in case
of structural breaks like mergers.

Another major reason why supervisors have looked for approaches other than SRisk and �CoVaR is
that the systemic capital add-on is designed for a di↵erent purpose. The problem with large, highly
interconnected (’systemically important’) banks is that they cause high losses to the system upon failure.
FED (2015) refer to these losses as the systemic loss-given-default (LGD). However, requiring banks to
hold more capital will mainly lower their probability of default (PD) and only to a lesser extent their LGD.
Capital-add-ons for systemically important banks should thus target banks that exhibit a high systemic
LGD, irrespective of their PD. In this manner, capital regulation can address the systemic expected loss

3See Table C.2 in the Appendix for an extended list of countries and the relevant sources. It seems that Asian countries are
no exception, but we could not find a reliable source for the total number of banks per country for this area.

4For the purpose of estimating SRisk Brownlees and Engle (2015) use a GARCH-DCC model. �CoVaR estimations are
based on quantile regressions.
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(PD times LGD) from bank failures. Clearly, SRisk and �CoVaR do not aim at quantifying the systemic
LGD. SRisk does only look at the capital shortfall of single institutions, conditional on systemic stress
events, thus concentrating on the receiving end rather than the originators of systemic risk.5 �CoVaR
does not consider capital shortfalls or failures at all but only looks at changes in the tail of the loss
distribution.

The above reasoning shows why regulators had to come up with their own quantification of the systemic
LGD.6 The approaches documented in (BIS (2012), BIS (2013), FED (2015), EBA (2014)) rely on a
simple scorecard approach where a number of indicators are linearly combined to an overall score.

In this article we look into the question whether the indicators stipulated in these regulations do indeed
provide a good proxy of the systemic LGD. Our dataset comprises a full interbank network observed each
quarter for several years in Austria. We compute the systemic losses caused by the hypothetical failure of
each individual bank in this full interbank network model — this can be thought of as the systemic LGD.
Furthermore, we examine the more general question of whether it is possible to explain the systemic
LGD by considering data at the level of individual banks only, i.e. without information on the complete
network. Given that the full interbank network represents both rarely available and highly sensitive data,
we can test only for the Austrian case.

The remainder of the paper is structured as follows: Section 2 discusses related literature to our work.
Section 3 presents the model framework used for computing contagion losses. Section 4 gives an
overview of the data set used for testing the regulatory scorecard approach. Section 5 lays out our
econometric approach for performing the estimations. In section 6 we present and discuss the results of
the estimations. Section 7 presents robustness checks, and section 8 concludes.

2. Related literature

Our work builds on a rich strand of literature on interbank contagion models. Much of the work on
studying the relation between the structure of the interbank network and contagion was inspired by the
seminal contribution of Allen and Gale (2000). Building on earlier work by Diamond and Dybvig (1983),
they show that the potential amplification of idiosyncratic shocks through the interbank market depends
on the network structure of that market. Another seminal, early contribution by Freixas et al. (2000)
shows that for a given network structure, the extent of contagion heavily depends on the specific param-
eters of the model. Other early contributions focussing on systemic risk and contagion include Angelini
et al. (1996), Rochet and Tirole (1996) and Suzuki (2002). Nier et al. (2007) confirm the existence of a
relation between the connectivity of the interbank network and contagion and show that this relation is

5This di↵erence in nature is also confirmed by regressing our measures of systemic contagion losses (see section 3) on
SRisk and similar measures of systemic risk: the coe�cient for SRISK is negative, indicating low systemic risk according to
interbank contagion when SRrisk shows high level of systemic risk, and the explanatory power is very weak. Detailed results
can be requested from the authors.

6Refer to Lö✏er and Raupach (2015) for further discussions on potential issues in the regulatory use of SRisk and �CoVaR.
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in fact non-monotonous. Iori et al. (2006) report a similar result, namely that the relation between con-
nectivity and and contagion becomes non-monotonous when heterogeneity among banks is introduced.
This is again confirmed by Elliott et al. (2014), who study a linearized version of the Eisenberg and Noe
(2001) model and also find a non-monotonic relation between connectivity and contagion. Note that in
a non-connected system there is no danger of direct contagion. In a very dense network, interbank ex-
posures are diversified and the likelihood of contagion is low. In lowly connected systems, however, the
risk of contagion may be high. Leitner (2005), using a model with the possibility of bailouts, shows that
interbank connectivity and the associated threat of contagion can also have positive e↵ects, as it creates
incentives for banks to provide mutual insurance. Drehmann and Tarashev (2013) develop measures to
di↵erentiate between the inward and the outward direction of systemic risk, as referred to in section 1.
Gai and Kapadia (2010), using methods from complex network theory, find that financial networks show
robust-yet-fragile features: the probability of contagion in general is low, but the e↵ect of cascades can
be widespread if they occur. Building on this work, Teteryatnikova (2014) shows that the commonly ob-
served7, ’tiered’ structure of banking systems is less prone to contagion than other structures with positive
degree correlations. Poledna et al. (2015) investigate the multi-layer structure of the interbank network
using Mexican data. They find that the combination of systemic risk contributions across di↵erent layers
(such as deposits, securitization, etc.) is super-additive. Bargigli et al. (2013) arrive at similar conclusions
using Italian data.

There are several studies that assess the impact of Basel regulations, e.g. Angelini et al. (2011), Georg
(2011) or Derviz (2013), but only few of them explicitly account for network e↵ects. Thurner et al. (2003)
study the e↵ects of Basel II capital requirements under di↵erent network structures. They find that the
impact of the regulatory parameter exhibits two plateaus, where small changes have very limited impact
on financial stability, irrespective of the network structure. Krug et al. (2015) study the impact of micro-
and macroprudential measures of Basel III regulations in an agent-based framework. They find that the
contribution of combined regulatory measures to financial stability is super-additive. In their model the
contribution of capital bu↵ers for systemically important institutions to overall stability is low.

Our contagion model builds on the work of Eisenberg and Noe (2001), who show how to compute con-
tagion results in the presence of cycles in the interbank network. This was further developed by Elsinger
et al. (2006), who embed the model into a larger risk assessment framework covering di↵erent risk
types.Elsinger (2009) introduces seniority structures and cross-holdings into the model of Eisenberg and
Noe (2001). Rogers and Veraart (2013) show how to compute such a model with liquidation costs.
Fischer (2014) develops a Merton (1974)-type valuation that is consistent with contractual relations in-
cluding derivates. Barucca et al. (2016) show the consistency of these contagion models with the balance
sheet identity in a comprehensive framework. They show that DebtRank, another popular contagion
model developed by Battiston et al. (2012), is a linearized special case of the general contagion model.

Other contributions focus on the quantification of contagion. These include Furfine (2003), Upper and
Worms (2004), Degryse and Nguyen (2007), Cont et al. (2013), and Caccioli et al. (2015). Upper (2011)
provides a good overview of many of these approaches, Glasserman and Young (2015) give a more

7See for example Boss et al. (2004).
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general overview. The endogeneity of market prices in our study is related to the model of Cifuentes et al.
(2005), where banks engage in fire sales in order to meet regulatory leverage constraints. Other relevant
contributions in this regard include Shin (2008), Adrian and Shin (2010), and Bluhm and Krahnen (2014).
Halaj and Kok (2015) study price formation in a game-theoretic model of network evolution.

Performing a contagion analysis as we do in the present study requires complete information on the
network of contractual linkages between financial institutions. Fortunately, this information is available
in our data set, but this is often not the case. Hence, several statistical methods were developed to
estimate the complete network from partially available data (such as the total sum of interbank assets and
liabilities of each institution). In one of the early contributions, Elsinger et al. (2006) use a maximum
entropy method to perform this estimation. Maximum entropy remains a popular general method for
this purpose, however, given the typically sparse structure of financial networks, it may overestimate the
actual number of links in some cases. Anand et al. (2015a) develop a minimum entropoy method aimed
at better replicating the typically sparse structure of interbank markets. Several alternative approaches
have been developed, including Drehmann and Tarashev (2013), Hałaj and Kok (2013) and Mastrandrea
et al. (2014). Anand et al. (2015b) perform a quantitative comparison of these di↵erent methods using
multiple data sets of financial networks of di↵erent types from di↵erent jurisdictions.

While our model of contagion builds on a network of contractual linkages, there exist also numerous
approaches of identifying network connections and contagion e↵ects based on statistical relationships,
typically using observable market data such as stock prices. Billio et al. (2012) demonstrate the ap-
plication of a range of common statistical methods to estimate such relationships, further contributions
include Diebold and Yilmaz (2014) and Giudici and Parisi (2016). In a more recent strand, Graphical
Models are employed to model dependency relationships between financial institutions. Denev (2015)
provides a comprehensive introduction to the methodology and its application to Finance, applications
to systemic risk include Ahelegbey and Giudici (2014) and Cerchiello and Giudici (2016). Giudici et al.
(2016) develop a comprehensive approach to systemic risk, accounting for both direct exposures as well
as statistical linkages.

Several statistical methods were developed specifically to account for the fact that the main focus in
systemic risk analysis lies on capital shortfalls and contagion e↵ects under extreme scenarios (tail de-
pendencies) rather than on unconditional relations. These undertakings gave rise to the aforementioned
SRISK and �CoVaR, amongst many others: Acharya et al. (2010), Acharya et al. (2012), Brownlees
and Engle (2015), Hautsch et al. (2015), Banulescu and Dumitrescu (2015), Adrian and Brunnermeier
(2016), Betz et al. (2016). Several studies find that such indicators can act as early warning signals for
financial crises, focusing on forecasts in time rather than on (intra-period) cross-sectional contagion: Mi-
noiu et al. (2014) find that the connectivity of the global financial network has potential to act as an early
warning indicator for systemic crises. Peltonen et al. (2015) build on the early-warning-model developed
by Betz et al. (2014) and show that the inclusion of network indicators significantly improves forecast
performance for crises of individual banks. Hautsch et al. (2014) focus on forecasting statistical systemic
risk indicators directly rather than observable crises.
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3. Computing contagion losses

3.1. Overview of contagion channels

In this section we briefly outline the basic framework for computing contagion losses. Full details are
given in section 3.2. As a general setup, we assume that a bank is hit by an idiosyncratic shock that wipes
out all of its assets. This corresponds to the realization of a high percentile-shock of the loss distribution
of the bank, as assumed in the �CoVaR-methodology. There are numerous historical examples for such
events, e.g. the failures of Herstatt, Barings Bank, Banker’s Trust, Lehman Brothers, Northern Rock,
Hypo Real Estate, to name some of the most famous. We then consider the impact on the financial
system that occurs via the four di↵erent contagion channels described below. The mechanics of each of
these channels is illustrated in Figure 1 for a small banking system of five banks.

The assumed exposure network exhibits a sparse core-periphery structure, as is typical for real-world
banking networks (see for example Boss et al. (2004)): bank A has received a loan from bank B, who
has received a loan from Bank C. There are two more peripheral banks, who have neither received nor
granted any loans to any of the other banks in the system. All banks, however, are indirectly connected
to each other through common asset holdings (overlapping portfolios). The structure can be seen from
the graphs in Figure 1). Assuming that bank A is hit by an idiosyncratic shock and defaults, the di↵erent
contagion channels will a↵ect this system as follows:

(a) First-round e↵ects (Figure 1a): Only direct creditors of the bank are a↵ected, in this example bank
B. In reality Bank C would be a↵ected through second-round e↵ects if bank B defaulted due to the
shock coming from A, but these higher-order e↵ects are ignored when considering first-round losses
(illustrated by the grey coloring of bank C in Figure 1a).

(b) nth-round e↵ects (Figure 1b): The impact of the shock on the entire network of interbank loans
is considered, i.e. also the losses of creditors of banks that are not directly exposed to the initially
defaulting bank A, but who are creditors to banks that are pushed into default due to the initial
shock (contagion spilling from bank B to C in this example). Banks with neither direct nor indirect
exposures do not incur losses under this contagion channel.

(c) Asset fire sale e↵ects (Figure 1c): Under this specification, losses that arise from the liquidation
of defaulted banks are considered. Asset fire sale losses reduce the recovery value of loans towards
defaulted banks, thereby increasing their creditors’ losses. These losses are computed endogenously
via a market adjustment process. Banks that are not at all exposed to defaulting banks are not a↵ected
by asset fire sale losses (in the absence of mark-to-market accounting). In the example depicted in
Figure 1c bank C now su↵ers via an additional channel compared to case (b): the recovery on its
exposure to B is now lower, as the fire sales by bank A and bank B push down their common assets’
prices.

(d) Mark-to-market e↵ects (Figure 1d): When banks hold common assets under a mark-to-market
accounting regime, liquidation losses on firesold assets have to be recognized by all banks in the
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Figure 1: Illustration of contagion channels
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system, even if they are not exposed to the interbank network at all (banks D and E in this example).
Note that both, asset fire sales and mark-to-market e↵ects, do also increase the losses for banks who
are already a↵ected by direct contagion losses.

3.2. Computation of shock impact

We employ a modified version of the framework developed in Siebenbrunner (2015) for computing con-
tagion losses. The model is based on the underlying idea that one bank’s interbank liabilities are another
bank’s interbank assets. The value of an interbank asset depends on the solvency of the borrower: if the
obligor defaults, all lenders have to adjust the value of their claims, a↵ecting their own solvency position.
If the shock stemming from this impairment pushes another bank into default, then all of its creditors will
have to adjust the value of their claims on this bank, potentially causing cascades of subsequent defaults.

Formally, consider a financial system composed of a set N = {1, . . . ,N � 1} of interlinked banks. The
linkages among these banks are captured in the bilateral loan matrix L 2 RN⇥N

+ , where Li, j represents
the liabilities of firm i towards firm j. L includes an additional row and column for a sink node which
captures liabilities outside the system (e.g. deposits by customers). This specification ensures that the
total liabilities of bank i are given by the i-th entry of the vector of column sums of the liability matrix:
p̄, p̄i =

Pn
j=1 Li j. Now consider the matrix ⇧ 2 [0, 1]n⇥n of relative liabilities, where each entry Li j of L is

divided by the total liabilities p̄i of that bank:

⇧i j =

8>><
>>:

Li j

p̄i
if p̄i > 0

0 otherwise
(1)
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Banks hold two types of assets: external assets (these comprise all assets that are not interbank claims),
denoted by the vector e 2 RN

+ , where ei is the value of external asset holdings by bank i, and interbank
assets. The value of interbank assets depends on the recovery rate of these claims: solvent debtor banks
repay their liabilities in full, while insolvent banks split the remaining value of their assets minus any
liquidation costs proportionally among their creditors. For a given payment vector p 2 Rn

+, the value of
interbank assets is given by ⇧0p 2 Rn

+. Assuming that a bank s 2 N is hit by an idiosyncratic shock, the
payment vector for the di↵erent contagion channels is computed as follows. Note that the setup is similar
to Siebenbrunner (2015), the main di↵erence being that we set the repayments of the defaulted bank to
0, something that could not be realized using only a shock to external assets as specified therein.

(a) First-round losses
As described in Section 3.1, first-round losses consider only losses to direct creditors of the defaulted
bank s. The payment vector first-round losses is thus simply given by setting ps = 0 and letting all
other banks repay their liabilities in full:

p1
i =

8>><
>>:

0 if i = s
p̄i otherwise

(2)

(b) nth-round losses
The recovery value of loan towards a defaulted bank will depend on the value of the remaining assets
of this bank, which will be split proportionally among all creditors of the bank. These assets may
include interbank assets, whose value will again depend on the solvency position of all obligors of
the bank concerned. Hence, the equilibrium value of all interbank assets will depend on the solvency
position of all banks in the system: claims on solvent banks are worth their full nominal value, all
claims on defaulted banks are worth the fraction of remaining assets of that bank relative to its total
liabilities (assuming equal seniority of all claims).

The idea described above was introduced and formalized as the clearing payment vector by Eisen-
berg and Noe (2001). Under the clearing payment vector, each solvent bank repays its liabilities in
full and each defaulted bank repays the value of its external assets plus the value of its interbank
claims under the clearing payment vector. Formally, we call a clearing payment vector a fixed point

p⇤,1(↵) = �1(p⇤,1(↵)) (3)

of the following map:

�1(p)i =

8>>>>><
>>>>>:

0 if i = s
p̄i if i , s ^ p̄i  ei + (⇧0p)i

↵ei + (⇧0p)i otherwise
(4)

The intuition behind this map is as follows: the bank s who is a↵ected by an idiosyncratic shock
does not repay any of its obligations. Other banks repay their obligations in full if the value of their
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external assets plus the value of claims on other banks is greater than their total liabilities (i.e. if
they are solvent). Insolvent banks repay the remaining value of their assets, i.e. their external assets
plus the value of claims on other banks, when considering that each of its debtor banks may also be
unable to repay its obligations in full. The ↵-parameter introduced in �1 will only be used later for
computing the e↵ects of asset fire sales. We set ↵ = 1 and write p⇤,1(1) = p⇤,1 when considering
nth-round e↵ects.

Note that this specification di↵ers from the original specifications in Eisenberg and Noe (2001) and
Siebenbrunner (2015) by accounting for the idiosyncratic shock to bank s. See Appendix A for a
formal derivation of the clearing payment vector.

(c) Asset fire sale losses
The e↵ects of asset fire sales (in the absence of mark-to-market accounting) are endogenized as a
haircut on external assets of defaulted banks, captured by the ↵-parameter. The underlying idea
is that, in case of default, companies are forced to sell their assets onto less than perfectly liquid
markets, thus achieving below book-value liquidation prices. Liquidation prices are determined by
equating demand and supply, where the supply function is given by the sum of external assets of
banks that are defaulting under a given payment vector:

s(p) =
X

{i2N : ei+(⇧0p)i< p̄i}
ei (5)

The inverse demand function (which gives the price, expressed as a percentage of the original book
value) is assumed to take a linear form:

d�1(s) = 1 �  ⇤ s
Pn

i=1 ei
(6)

Where  2 [0, 1] is a slope parameter expressing the sensitivity of market prices to volume changes.
This setup is, again, taken from Siebenbrunner (2015). The reason why we choose to adopt this setup
over other settings (e.g. Cifuentes et al. (2005)) is that it allows for an appealing interpretation: when
no one is willing to buy an asset, its liquidation price is equal to 0. In our setting, this would be
the case when  = 1 and all banks are in default. The -parameter can thus be interpreted as the
share that the financial system under investigation represents in the overall market for firesold assets
(buyers outside the system could be other financial investors not included in the sample, or foreign
investors). The calibration of the -parameter is explained in section 3.3. The equilibrium price ↵⇤,1
is now defined to be the greatest fixed point of the map:

⇥1(↵) = d�1(s(p⇤,1(↵))) (7)

Where p⇤,1(↵) is again a fixed point of the same map �1 used in nth-round contagion, but this time
with a stressed ↵-parameter:

p⇤,1(↵) = �1(p⇤,1(↵)) (8)
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This gives the final payment vector p⇤,1 for asset fire sales with the following properties:

p⇤,1 = p⇤,1(↵⇤,1) =

8>>>>><
>>>>>:

0 if i = s
p̄i if i , s ^ p̄i  ei + (⇧0p⇤,1)i

↵⇤,1ei + (⇧0p⇤,1)i otherwise
(9)

Next we show that the market equilibrium ↵⇤,1 exists and how it can be computed:

Theorem 1. The sequence ↵n, n 2 {0, 1, . . . } defined as:

↵n+1 = ⇥1(↵n) (10)

and initialized with ↵0 = 1 converges to a limit satisfying 0  ↵⇤ = ⇥1(↵⇤)  1 in a finite number of
steps. This limit is also the greatest fixed point of ⇥1.

Proof: see Appendix B

(d) Mark-to-market losses
The equilibrium price under mark-to-market e↵ects is defined in analogy to asset fire sales, as a fixed
point ↵⇤,2 of the map:

⇥2(↵) = d�1(s(p⇤,2(↵))) (11)

Where p⇤,2(↵) is again a fixed point of a new map �2:

p⇤,2(↵) = �2(p⇤,2(↵)) (12)

Where �2 is more punitive than �1 because the price drop a↵ects even banks not exposed to default-
ing banks:

�2(p)i =

8>>>>><
>>>>>:

0 if i = s
p̄i if i , s ^ p̄i  ↵ei + (⇧0p)i

↵ei + (⇧0p)i otherwise
(13)

The proof of convergence for ⇥2 works in analogy to theorem 1.

3.3. Parameter calibration

As explained in section 3.2, the -parameter can be interpreted as the share that the financial system
under investigation represents in the overall market for firesold assets. In the case of Austrian banking
assets we argue that the relevant market consists mainly of major European banks. In order to calibrate
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this parameter we thus compare the assets of Austrian banks with the free leverage in excess of leverage
targets of major European banks. The latter are identified as Significant Institutions (SIs) that fall under
direct supervision of the European Central Bank within the Single Supervisory Mechanism EU (2013),
excluding the Austrian SIs. By free leverage we denote the amount of assets that an institution could
purchase using external funding before hitting the leverage target. This reasoning gives the following
formula for :

 =

PN�1
i=1 Assetsi

P
i2external Buyers max

⇣
Capitali�Assetsi⇤✓

✓ , 0
⌘ (14)

Free leverage was computed using leverage targets ✓ for both risk-weighted and total assets against cor-
responding capital items.8 All calculations yielded values for  close to 50%. We thus conclude that
the Austrian banking system accounts for about 50% of the relevant market and set  = 0.5 for our
calculations.9

3.4. Computation of contagion losses

Contagion losses for any given contagion channel are computed conditional on an idiosyncratic shock
to a single bank s, as defined above. The impact of bank s’ default on the system is then given by the
losses on interbank claims under the corresponding payment vector, as opposed to the original vector
of nominal liabilities. These losses are summed over the entire banking system excluding the initially
defaulted bank and the sink node. At any given point in time t, the losses caused by bank s are thus given
by:

ys,t = ~10S⇧0(p̄t � pt) (15)

Where p 2 {p1, p⇤, p⇤,1(↵⇤,1), p⇤,2(↵⇤,2)} for first-round, nth-round, asset fire sales and mark-to-market
e↵ects, respectively. The matrix S 2 {0, 1}N⇥N removes bank s and the sink node from the computation:

S i j =

8>><
>>:

1 if i = j ^ i , s ^ i < N
0 otherwise

(16)

8The exact leverage targets and capital items used used are confidential. Please contact the authors for further details.
9We investigate di↵erent values for  as robustness checks in Section 7.
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4. Data

The data used to construct the network of interbank liabilities are taken from the central credit registry,
which covers all financial claims held by Austrian banks exceeding a reporting threshold of EUR 350k
across asset classes on an obligor-basis. This data covers the same time span as the bank-specific indica-
tors (see below) and has the same frequency. Thanks to unique identifiers we are able to identify interbank
claims within the credit registry, which we combine with the regulatory reporting data to construct a large
panel data set.

We now turn to describing the explanatory variables. These are bank-specific variables that cover a broad
data set of balance sheet and profitability items, as well as regulatory capital and capital requirements.
We also include network metrics, but we restrict our choice to variables that are observable at the level
of a single bank, in line with our goal of determining whether bank-specific variables alone can act as
a good proxy of contagion losses. We thus include the number of in-going and out-going links (degree
centralities) in our data set. All these data are available on a quarterly basis for all domestically operating
banks at the unconsolidated level. The observation horizon runs from the first quarter of 2008 to the
first quarter of 2016, yielding T = 33 time periods. Taking into account all institutions that have held a
banking license at some point during the observation horizon, but excluding special purpose banks and
a�liates of foreign banks, we arrive at a sample of N = 716 banks.

In order to assess whether the indicators proposed by Basel regulations — or any other set of bank-
specific variables — can constitute a good set of proxies for contagion losses, we create di↵erent subsets
of our data. We estimate separate models for (i) the full set of available data (referred to as the ’extended
data set’), (ii) a restricted data set that includes only publicly available data (referred to as the ’publicly
available data set’) as well as (iii) data that are used under Basel regulations (referred to as ’Basel III
data set’). There are di↵erent regulatory proposals for identifying global (BIS, 2013) and domestic (BIS,
2012) systemically important banks. We choose to work with the indicators stated in the EBA (2014)
implementation of the BIS (2012) proposal for identifying domestic systemically important banks. There
are several reasons for this choice: (i) There are no global systemically important banks present in our
sample, so the domestic set seems more applicable. Moreover, (ii) we want to apply the analysis to the
entire banking system, and several of the indicators for global institutions are not available for smaller and
medium-sized banks, e.g. Level 3 assets. For the indicators listed by EBA (2014) we have no data gaps
with the exception of the indicator ”value of domestic payment transactions”, which has to be dropped
from further analysis. In consequence the number of indicators drops from 10 as recommended by EBA
(2014) to 9 in our case. Compared with the indicator list for global systemically important banks by
(BIS, 2013), there is a high degree of overlap with 8 of the 10 (9 in our case) indicators for domestic
importance also being present in the set for global importance. The full overview of all variables, their
treatment and their categorization is given in Table 1, summary statistics are provided in Table C.3 in the
appendix.

We perform a series of panel unit root tests. First, we apply the test by Im and M. Pesaran (2003) that
allows each panel unit i to have its own autocorrelation coe�cient. As this test does not deliver robust
results for all of our (unbalanced) time series, we also rely on the so-called meta panel unit root tests by
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Choi (2001) that conducts the Phillips and Perron (1988) unit-root tests for each individual separately
and then tests the p-values from these tests to produce an overall result.10 The results, presented in
Table C.4, show a mixed picture. For the explanatory variables, 71% of the tests reject the unit-root-
hypothesis at the p = 0.05-level. Given that unit root tests usually require longer time series in order to
draw meaningful conclusions, we make our final decision based on the following additional reasoning.
First, consider the variables that show the strongest indication of a unit root across all tests: these are
the Tier1-ratio, the Tier1-ratio for credit risk, and the leverage ratio. There was high pressure on banks
from regulators to improve capitalization after the crisis, which may explain why the series seem to be
integrated over our time horizon since 2008. From an economic point of view, however, capital ratios
cannot grow indefinitely and should thus be expected to be stationary, at least once desired capital levels
are reached. Based on these considerations, we thus reject the unit-root hypothesis for these variables.
Similar reasoning applies for the other explanatory variables that appear to be integrated or show mixed
results in the tests, as most of them are in fact ratios. Regarding the number of ingoing links, we again
consider this figure as stationary in the long run. The number of links is always bounded by 0 and
the number of banks in the system, and banks are not expected to increase or decrease their number of
counterparties indefinitely.11

Regarding the dependent variables, 65% of the tests reject the unit-root hypothesis at p = 0.05. We
consider the following reasoning to arrive at a final verdict on integration for these variables — note the
following inequalities for contagion losses, as defined in section 3.4:

~10S⇧0(p̄ � p)  ~10M⇧0( p̄ � p)  ~10M⇧0 p̄  ~10M(⇧0 p̄ + e) =
N�1X

i=1

TotalAssetsi (17)

Where the matrix M =

8>><
>>:

1 if i = j ^ i < N
0 otherwise

removes only the sink node from the computation.

Hence, total assets form an upper bound for the overall contagion losses. Most of the unit root tests reject
the hypothesis that total assets have a unit root (see Table C.4). We can therefore reject the unit root
hypothesis for contagion losses. This theoretical result is also in line with most of the unit root tests for
contagion losses in Table C.4.

10We do not consider panel unit root tests that require strongly balanced panels since we do not want to exclude banks in
order to achieve a balanced panel. Excluding time periods would be an even less desirable option.

11We further test if the time series of the number of banks in the system over the observation span is stationary. The standard
Phillips–Perron unit root test rejects the hypothesis of a unit root at the p = 0.05-level.
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Table 1: Description of variables

Dependent variables Description Unit

First-round caused losses Sum of losses caused by first-round contagion e↵ects No
nth-round caused losses Sum of losses caused by nth-round contagion e↵ects EUR
Asset fire sales caused losses Sum of losses caused under asset fire sales EUR
Mark-to-market caused losses Sum of losses caused under mark-to-market e↵ects EUR

Explanatory Variables Description Unit Basel III Publicly
available

Total assets Total assets EUR Yes Yes
Private sector deposits Deposits taken from domestic and foreign nonbanks

(no public sector), all currencies
EUR Yes No

Private sector loans Loans to foreign and domestic nonbanks (no public
sector)

EUR Yes No

Face value of derivatives Notional value of OTC derivatives EUR Yes No
Cross border loans Loans to foreign domiciled nonbanks and banks EUR Yes No
Cross border deposits Deposits from foreign domiciled nonbanks and banks EUR Yes No
Bank deposits Deposits taken from domestic and foreign banks, all

currencies
EUR Yes Yes

Bank loans Loans to domestic and foreign banks, all currencies EUR Yes Yes
Securitized debt Liabilities in the form of securitized debt obligations

and transferable certificates
EUR Yes Yes

Loans to nonbanks Loans to foreign and domestic nonbanks EUR No Yes
Non-bank deposits Deposits taken from domestic and foreign nonbanks

(i.e. customers), all currencies
EUR No Yes

Net interest income Net interest income EUR No Yes
Interest rate nonbank loans Average interest rate on nonbank loans % No No
Interest rate bank loans Average interest rate on bank loans % No No
Interest rate nonbank deposits Average interest rate on nonbank deposits % No No
Interest rate bank deposits Average interest rate on bank deposits % No No
LLP Specific loan loss provisions (loans to domestic and

foreign nonbanks, all currencies), smoothed
EUR No Yes

Tier 1 Eligible tier 1 capital EUR No Yes
RWA Total risk-weighted assets EUR No Yes
RWA for credit risk Risk-weighted assets (credit risk only) EUR No Yes
NFCI Net fee and commission income (smoothed) EUR No Yes
Interest bearing securities Exchange-traded interest-bearing securities (held as

assets) issued by domestic and foreign banks and non-
banks, all currencies

EUR No Yes

Sta↵ expenses Sta↵ expenses EUR No Yes
Other operating expenses Operating expenses other than sta↵ expenses EUR No Yes
Number of ingoing links Number of bank deposits count No No
Number of outgoing links Number of bank loans count No No

Source: OeNB. Regulatory reporting data and credit registry data.
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5. Econometric Approach

In this section we briefly outline our econometric approach. Our goal is to examine whether bank-specific
indicators such as the Basel III indicators can predict contagion losses arising from di↵erent contagion
channels, as described in section 3.

The multilevel structure of our data – around N = 716 banks are observed for T = 33 time periods –
calls for an application of panel-data analysis. Usually panels are more informative than cross-sections,
as unobserved characteristics of individuals can be taken into account. Furthermore, panels allow us to
test whether individual histories and/or unobserved individual characteristics matter.

The results of these tests are given in Table C.5. First, we test for the importance of individual e↵ects.
This is done with the Breusch-Pagan Lagrangian multiplier test (Breusch and Pagan, 1980). The rejec-
tion of the Breusch-Pagan test indicates that individual e↵ects are important. We also perform the test
proposed by Honda (1985) as well as a standard F-test. Both of them compare the pooled model with the
individual e↵ects alternative12. The rejection of these tests again confirms the importance of individual
e↵ects. We proceed to the Hausman test (Hausman, 1978) to decide between fixed and random e↵ects.
The rejection of the Hausman test indicates that only the fixed e↵ects model is consistent. As can be seen
from Table C.5, all tests can be rejected with p = 0.01.

These test results show that a fixed-e↵ects panel regression (or equivalently, least squares dummy variable
regression, henceforth LSDV) is consistent for our data. In its general form, our static one-way regression
with panel-specific e↵ects reads as follows:

yi,t = �
0Xi,t + ui + ei,t, i = 1, · · · ,N; t = 1, · · · ,T, (18)

Where yi,t denotes the contagion losses as defined in section 3. Xi,t are the K explanatory variables, as
described in section 4. eit is the idiosyncratic error term, which we assume to be i.i.d.: ei,t ⇠ (0;�2

e).
� represents the K regression coe�cients, and ui is the panel-specific, time-invariant fixed e↵ect (with
Et[ui] = ui, Et[Xi,t · ui] , 0).

Using three distinct data sets in our estimations, we need to account for the di↵erent sizes of these sets.
Methods for choosing the best predictors from a data set include e.g. subset selection (forward- and
backward-stepwise selection, best subset selection), shrinkage methods (e.g. LASSO, ridge regression)
and Bayesian model averaging.13 We apply best subset selection and Lasso shrinkage to compare and
check the robustness of our results. For both methods we choose the best model size/shrinkage factor
based on a 10-fold cross validation (CV). We then compare the 10-fold cross validation results (Lasso
shrinkage and best subset selection) with the best subset selection model with size 9 (number of available
Basel III indicators).

12We apply the routines implemented by Croissant and Millo (2008) to perform the tests.
13See Hastie et al. (2009) for a good overview of these methods.
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To the best of our knowledge we are the first to apply 10-fold cross validation in the context of fixed
e↵ects panel models. Cross validation has been extensively used for cross sectional data but is less
popular for time series models, as standard CV procedures break down since the validation and training
samples are no longer independent (see Arlot and Celisse (2010) for more details). In order to address
this problem we apply 10-fold CV over individuals (banks). This strategy allows us to identify the best
model for predicting contagion losses for previously unseen banks, while avoiding time series related
dependency issues. This procedure is also in line with the set-up of our analysis.

The best subset selection procedure (i) has the advantage of easy interpretation of the coe�cients of
a single, best-fitting model, (ii) allows for explicitly controlling the model size, (iii) allows exploiting
the statistical relationship between fixed e↵ects and least square dummy estimation (see below) and it
(iv) allows to calculate standard errors and goodness of fit measures. The main issue with best subset
selection for prediction is — of course — over-fitting. We thus perform cross validation to select the best
model (size).

Best subset selection consists of an exhaustive search of the entire space of 2K � 1 models for K pre-
dictors. Given the exponential time-complexity of this task, we employ the leaps-and-bounds algorithm
by Furnival and Wilson (1974) to perform the search.14 Models are compared based on their predictive
power in the LSDV-regression. Note that when comparing models of the same size k, as we do, the
selection is insensitive to the goodness-of-fit measure used (e.g. R2, AIC, BIC,...). We thus look for a
model that optimizes the following problem for all k 2 {1, . . . ,K � 1}:

max R2(Xk) = 1 �
PNT

i=1(ŷi �
Pk

i=1 �̂iXk)2

PNT
i= (yi � ȳi)2

s.t. �̂ = (X
0
kXk)�1X

0
ky,

Xk ⇢ XK .

(19)

The optimization problem in Eq. (19) is well defined by Weierstrass’ extreme value theorem, as R2(Xk) is
a continuous function and the set of all combinations of k variables out of the set of K variables is compact
(the cardinality of the set is

⇣
K
k

⌘
). The key idea is that we do not search across di↵erent model sizes. All

bank dummies are forced into the model in the LSDV-estimation, while the leaps and bounds algorithm
searches for the best remaining predictors for a model of size k plus the number of bank dummies.

Lasso shrinkage (i) has advantages over other selection procedures in the case of more covariates than
observations, (ii) it shows which covariates are the most important (i.e. their coe�cients are shrunken to
zero at last) and (iii) it has excellent prediction performance.15

Based on the econometric model in Eq. (18), we solve the following minimization problem in the Lasso
procedure:

14We use the implementation of Thomas Lumley which is based on earlier work by Alan Miller.
15See Hastie et al. (2009) ch. 3 for more details.
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�̂L 2 arg minb
PN

i=1
PT

t=1

⇣
ÿi,t �

P
j2K b j ẍi, j,t

⌘2
+ �
Pp

j=1 |bj| (20)

ÿi,t and ẍi, j,t refer to the within transformation of the respective variables to remove the fixed e↵ect.
Removing the fixed e↵ect has the same e↵ect as forcing the bank dummies into the regression (i.e. bank
dummies are not shrunken). We then select the best Lasso model (�) with respect to the average mean
squared error that is calculated in the 10-fold cross validation. � is referred to as the shrinkage parameter.
The greater � the bigger is the shrinkage e↵ect on the coe�cients bj.

6. Results & Discussion

Figure 2: Fit of selected models
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(a) LSDV R2 of selected models
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(b) Di↵erence between LSDV and within R2

Figure 2a plots the explained sum of squares of the least squares dummy variable estimation for di↵erent
contagion channels. As can be seen from the chart, results are very similar across the models used for the
di↵erent data sets (i.e. the models of size k⇤ = 9 plus bank dummy variables with the best fit, as selected
by the LSDV-criterion, for the publicly available and extended data sets and the model for Basel III
variables). The full results for these models are presented in Tables C.6, C.7, C.8, C.9, C.10, C.11, C.12,
C.13, C.14, C.15, C.16 and C.17 in the appendix.

The first thing that draws attention is the high fit of all these models, ranging from around 98% for
first-round losses to around 86% for mark-to-market losses. Note, however, that the R2 depicted in
Figure 2a shows the overall R2 consisting of contributions from bank-specific variables, Xi,t, as well as
the fixed e↵ects, ui. To isolate the contribution of bank-specific e↵ects we conduct a de-meaned within
estimation.16 Figure 2b gives the di↵erence in R2 between the LSDV and the within estimation, and thus

16De-meaning instead of pooling is necessary to avoid an omitted variable bias.
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Figure 3: Within R2 for di↵erent models
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the contribution of the bank specific e↵ects. As can be seen, the contribution of the bank-specific e↵ect
ranges from around 30pp to 81pp, thus accounting for 31% to 94% of the explanatory power of the
model. There is a marked di↵erence between mark-to-market losses and the other contagion channels
for this e↵ect: while for the other channels (first-, nth-round and asset fire sales), the average contribution
of the fixed e↵ect is around 60pp or 64% of explanatory power, this e↵ect is much stronger for mark-
to-market losses at around 83pp or 96%. The picture is very similar for the best subset CV models,
with explanatory typically power falling by only around 5pp and markedly less in most cases. We take
this as an indication that the predictive power of the models is of similar quality and exhibits the same
overall patterns as the explanatory power. We interpret the substantial contribution of fixed e↵ects as
the importance of the average network position of the bank. This position cannot be proxied by other
bank-specific variables in our set and it is crucial to explaining contagion losses. We conclude from these
findings that: (i) bank-specific variables are able to provide a solid proxy for contagion losses, but (ii)
network e↵ects that cannot be captured by such variables are very important in terms of predictive power,
especially for higher-order contagion channels.

Looking at the di↵erence in performance across di↵erent data sets, we see that the extended data set
strictly dominates the other two data sets for all contagion channels. Given that both the publicly available
as well as the Basel III data set are true subsets of the extended set, their explanatory power acts as a lower
bound for that of the extended data set. While performing slightly worse on some contagion channels, the
explanatory power of the Basel III data set typically falls within a range of 5pp of that of the other data
sets. This holds both when including (Figure 2a) and when excluding (Figure 3) the contribution of fixed
e↵ects. We therefore conclude that the Basel III data set is an e�cient selection of bank-specific variables
to capture systemic risk e↵ects (keeping in mind the general above mentioned limitations regarding bank-
specific variables).

Looking at the di↵erences between contagion channels, we see that the explanatory power in the LSDV
estimation declines monotonously across the increasing complexity of contagion channels from first-
round to nth-round to fire sales to mark-to-market losses. Note that contagion a↵ects banks who are
increasingly further away from the defaulted bank (in a network-topological sense) as one moves from
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first-round to mark-to-market losses. The drop in explanatory power thus shows that these e↵ects become
increasingly harder to predict from data relating only to the initially defaulted bank. Looking at the results
of the within estimation, one can see that the models for the mark-to-market channel have almost zero
explanatory power without the contribution of the fixed e↵ects.We infer that it is not possible to produce
models with meaningful predictive power for the mark-to-market channel from bank-specific data alone.

Figure 4: Lasso Shrinkage of Selected Models (extended data set)
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(a) First round caused losses
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(b) nth-round caused losses
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(c) Firesales caused losses
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(d) Mark-to-market caused losses

We now turn our attention to the contributions of individual variables (Figure 4 shows the Lasso shrink-
age of the twelve most important selected variables17, Tables C.6 to C.17 show the estimation results
of the selected models). For all contagion channels except mark-to-market losses — where we already
noted the poor predictive power of the models — we can see that total assets are the most prominent
variable. They are selected and highly significant in all data sets both by best-subset selection and by CV
best-subset selection. They are also selected in all Lasso CV models. Furthermore, the Lasso shrinkage
shows that total assets are the most important variable, being the last variable to be shrunk in all con-
tagion channels except mark-to-market losses. Total assets consistently carry a positive sign, meaning
that higher total assets imply higher caused losses. This finding is in line with regulations for global
and domestic systemically relevant banks (BIS (2013), EBA (2014), FED (2015)), where a general size
criterion is given the highest weight.

17We only present the shrinkage of the twelve most important variables (instead of 26) to improve readability. The full
set of Lasso results with 15,000 values of di↵erent � (shrinkage parameter) are available from the authors upon request. See
Eq. (20) for more details.
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The contributions of other variables are less stable: for first-round losses, we find that liabilities other
than bank deposits tend to be important variables with negative signs, whereas bank deposits and other
assets tend to be important variables with positive signs. The importance of non bank deposits and
other liabilities follows naturally from the definition of first-round (caused) losses. The negative sign for
liabilities like cross-border deposits shows that the impact of a default on the national banking system is
reduced when foreign investors have to share a portion of the losses. The positive sign for bank loans and
the negative sign for risk-weighted assets indicate that banks who are more/less active on the interbank
market cause higher/lower contagion losses (keeping in mind that interbank assets typically carry low
risk weights as opposed to other types of lending. e.g. retail lending). The picture is similar for nth-round
and asset fire sale losses, but the coe�cients of the models tend to be shrunk much sooner, indicating that
they contribute less to explaining the outcome. This is in line with the lower explanatory power of these
models, as noted above.

We also note that the number of ingoing and the number of outgoing links are not selected in any of the
CV models where they are available (i.e. the Extended data set). We conclude that these network charac-
teristics are too simple to explain contagion losses and that one should consider contagion output rather
than simple network measures when assessing systemic risk. When a regulator has access to the infor-
mation on network measures, usually the full information on the interbank network and balance sheets
will be available as well. Computing contagion output is thus only a matter of additional methodological
and computational e↵ort. Thanks to recent methodological contributions by various authors, there exist
comprehensive frameworks that allow computing contagion losses, as shown in this study.

7. Robustness checks

The robustness of the results has been assessed by performing the estimations with lower and higher
values for  = 0.4 and  = 0.6 instead of  = 0.5 for the benchmark model. Di↵erent values of  change
the contagion impact for asset fire sales and mark-to-market losses.

Table C.18 and C.19 summarize the estimation results for asset fire sales and mark-to-market losses.
We only compare the best subset selection results with model size of 9 variables.18 The results appear
robust for all three data sets: in the Basel III data set, all signs remain the same, variables carry same
signs, similar coe�cients and similar significance levels. For the set of publicly available data, it can be
noted that the selection algorithm chooses the same set of variables. The results for these variables are
also in line with the benchmark model. For the extended data set, the algorithm selects cross boarder
loans instead of securitized debt for  = 0.4, which improves the fit for this model. The other variables
are in line with the benchmark model. For the  = 0.6 specification, the same variables as for the
benchmark model are selected, and the results for the variables are in line with the benchmark model.
The explanatory power for the models of the robustness checks are in line with the benchmark model, so
the important finding of the high contribution of the fixed e↵ect is robust to variations in the  parameter

18Further tables for best subset selection with CV and Lasso CV are available from the authors upon request.

20



for the fire sale models. Regarding the mark-to-market estimations, the results are more di↵erent. There
are more di↵erences between the sets of variables selected for the publicly available and for the extended
data sets as compared to the benchmark model. For all data sets, coe�cients are not always the same
and significance levels are generally lower. We combine this finding with the fact that all model fits
with mark-to-market data are very low and conclude that it is di�cult to estimate robust models for
mark-to-market e↵ects from bank-specific data alone.

8. Conclusion

The purpose of this study was to assess whether the systemic risk indicators proposed in the Basel III
regulations are able to capture network contagion e↵ects. We have examined this question by computing
contagion losses for di↵erent contagion channels and estimating the impact using bank-specific data.

Contagion losses are computed for four di↵erent channels: first-round, nth-round, asset fire sales and
mark-to-market e↵ects. These e↵ects are separated using novel extensions of the Eisenberg and Noe
(2001)-framework. The existence and construction of clearing payment vectors for nth-round and asset
fire sale e↵ects follows directly from Rogers and Veraart (2013). We endogenize liquidation losses using
a market demand function for firesold assets, as pioneered by Cifuentes et al. (2005). We separate the
impact of asset fire sales and mark-to-market accounting, as introduced in Siebenbrunner (2015). We
show the existence of market equilibria for both channels and provide an algorithm for computing the
greatest market equilibrium in a finite number of steps. Losses stemming from idiosyncratic bank defaults
are computed for all contagion channels and then aggregated over the system to give the total impact of
a default on the system.

We then estimate these contagion losses using 9 out of the 10 systemic risk indicators proposed in the
EBA (2014) implementation of BIS (2012) recommendations (referred to as the Basel III data set). Re-
sults for this data set are then compared against two di↵erent models, one consisting of publicly available
data only, the other containing an extended data set of bank-specific indicators that include all Basel III
and publicly available data. In order to test the predictive power of the selected models, we apply cross
validation on all selected best subset models across di↵erent sizes and (in order to test the robustness of
the best variable selection) Lasso shrinkage with cross validation. We perform a within and a least square
dummy variable regression to get an unbiased contribution of the bank-specific fixed e↵ect, which we in-
terpret as the average contribution of a bank’s network position to its systemic risk contribution. Results
show that this fixed e↵ect account for about 30% of explanatory power for most contagion channels.

Regarding the mark-to-market channel, the estimations do not yield models with satisfying explana-
tory power, indicating that these e↵ects are more driven by features of the interbank network than by
bank-specific characteristics. Comparing the di↵erent data sets, we find that the models using Basel III
indicators produce similar as the models for the other data sets. We interpret this finding as an indication
that the Basel III indicators represent a good choice of bank-specific variables. We also find that the ex-
planatory power decreases as one moves to contagion channels that a↵ect increasingly larger parts of the
network, indicating that bank-specific indicators are less able to explain such systemic e↵ects. We also
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find that measures of degree centrality do not have significant explanatory power for contagion impact.
We thus advocate the use of more sophisticated contagion models rather than simple network measures
such as degree centralities whenever network data are available. We reach this conclusions based on our
dataset that comprises a full interbank network of Austrian banks and therefore encourage researchers to
test these findings on data from other countries.
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Appendix A. Existence and construction of the clearing payment vector

The existence of the clearing payment vector as defined above follows directly from Rogers and Veraart
(2013), who show that there exists a largest clearing payment vector for the following map:

�(p)i =

8>><
>>:

p̄i if p̄i  ei + (⇧0p)i

↵ei + (⇧0p)i otherwise
(A.1)

Note that we omit the liquidation costs for interbank assets from the original specification from Rogers
and Veraart (2013). This is necessary to avoid inconsistencies with regards to the assumption of limited
liability, as shown in Siebenbrunner (2015). The proof of existence for the largest clearing payment
vector is completely analogous to Rogers and Veraart (2013) by considering the sequence pn defined as
below and initialized with p0 = p̄:

pn+1 = P�(pn) (A.2)

Where the matrix P is defined as: P =

8>><
>>:

1 if i = j ^ i , s
0 otherwise

. Note that P� = �1.

The convergence of the sequence pn to the greatest clearing payment vector follows from:

Proof. i Note that �1 is monotone (i.e. if p̃  p then �1( p̃)  P�(p)), monotone from above, bounded
above by p̄ and that all pn are non-negative. All of these follow from the definition of � in Eq. (4). A
more extensive derivation is equivalent to Rogers and Veraart (2013).

ii Let P = {pn}ni=1 be the set of clearing payment vectors. Note that (P,) is a directed set because of
the monotonicity of �1(p). It is also a complete lattice since �1 : [~0, p̄]! [~0, p̄], as discussed in (i).

iii Note that for any Q ⇢ P it holds that sup Q = pj where j is the lowest index of ps in Q. Note that Q
is a directed set because of the monotonicity of �1. Note that �1(pj) = pj+1. Let Q̄ = Q\pj. Note
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that for all pk 2 Q̄ : �1(pk) = pk+1. Note that 8pk 2 Q̄ : �1(pk)  pj+1. Hence, we have established
Scott-continuity of �1.

iv From (ii) and (iii) it follows that p⇤ is the greatest fixed point of �1 by applying Kleene’s fixed point
theorem.

⇤

Note the equivalence of these results with the results of Rogers and Veraart (2013) for �. We chose to
establish the proof di↵erently, using Kleene’s theorem, for the sake of brevity and alignment with the new
proof in Appendix B. The convergence of the sequence after a finite number of steps follows analogously,
from the fact that the system comprises a finite number of banks.

Appendix B. Proof of Theorem 1

Proof. When ↵1 = ↵0 = 1 convergence is trivial. This is the case when the defaulted bank has no
liabilities, implying p⇤s = p̄s = 0 or when the bank has no external assets, i.e. es = 0. For all other cases
consider the following:

i ⇥1 is bounded above by 1. This follows from the fact that 8i : ei � 0, hence 8p : s(p) � 0. If we
consider that  2 [0, 1], it follows that that 8p : d�1(s(p))  1.

ii p⇤,1(↵) is monotone in ↵, i.e. if ↵̃  ↵ then p⇤,1(↵̃)  p⇤,1(↵). This follows from the definition of �1

and the fact that ↵ 2 [0, 1].

iii ⇥1 is monotone, i.e. if ↵̃  ↵ then ⇥1(↵̃)  ⇥1(↵). To see this, note that (ii) implies s(p⇤,1(↵̃)) �
s(p⇤,1(↵)) and thus d�1(s(p⇤,1(↵̃)))  d�1(s(p⇤,1(↵))).

iv From (i), (iii) and the fact that ↵0 = 1 it follows that the sequence ↵n is monotonously decreasing, i.e.
8n : ↵n+1  ↵n.

v ⇥1 is bounded below by 0. This follows from the fact that 8p : s(p)  Pn
i=1 ei. If we consider that

 2 [0, 1] it follows that that 8p : d�1(s(p)) � 0.

vi Consider the set A = {↵i}1i=0. It follows from (iv) that (A,) is a partially ordered set. It is also a
complete lattice since ⇥1 : [0, 1]! [0, 1], as shown in (i) and (v).

vii Note that for any S ⇢ A it holds that sup S = ↵ j where j is the lowest index of ↵s in S . Note that S is a
directed set by (iv). Note that ⇥1(↵ j) = ↵ j+1. Let S̄ = S \↵ j. Note that for all ↵k 2 S̄ : ⇥1(↵k) = ↵k+1.
Note that 8↵k 2 S̄ : ⇥1(↵k)  ↵ j+1. Hence, we have established Scott-continuity of ⇥1.

viii (Existence of a limit) From (iv) and (v) it follows that there exists a monotone limit ↵⇤ = limn!1 ↵n.
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ix (Convergence to the greatest fixed point) From (vi) and (vii) it follows that the limit derived in (viii)
is the greatest fixed point of ⇥1 by applying Kleene’s fixed point theorem.

x Consider the set D(↵) = {i : p⇤,1(↵)i < p̄i}, i.e. the set of banks that are in default under the payment
vector for a given ↵. Note that for ↵̃  ↵ it holds that D(↵̃) ◆ D(↵).

xi From (iv) and (x) it follows that the cardinality of D(↵n) increases monotonously, i.e. D(↵n+1) ◆
D(↵n).

xii Note that 8↵ : D(↵) ✓ N because the sink node cannot be in default by construction, hence the
cardinality of D is bounded above by N � 1.

xiii (Convergence after finite number of steps) Note that D(↵n+1) = D(↵n) implies that s(p⇤,1(↵n+1)) =
s(p⇤,1(↵n)) and thus d�1(s(p⇤,1(↵n+1))) = d�1(s(p⇤,1(↵n))) = ↵n+1.

⇤

Note that the fixed point of ⇥1 is not necessarily unique. This is not an issue in our setting as the
adjustment process stops when no new banks enter into default, hence lower fixed points than ↵⇤, 1 are
never reached.
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Appendix C. Tables

Table C.2: Share of listed banks in di↵erent countries

Country Number of listed banks Total number of banks Percentage of banks listed

Austria 5 690 0.7%
Belgium 4 101 4.0%
Bulgaria 5 28 17.9%

Cyprus 3 65 4.6%
Czech Republic 1 59 1.7%

Denmark 23 115 20.0%
Finland 2 287 0.7%
France 19 581 3.3%

Germany 15 1,779 0.8%
Greece 7 46 15.2%

Hungary 1 145 0.7%
Ireland 2 430 0.5%

Italy 19 658 2.9%
Luxembourg 1 147 0.7%

Malta 4 29 13.8%
Netherlands 5 213 2.3%

Poland 16 674 2.4%
Portugal 3 149 2.0%
Slovakia 5 29 17.2%
Slovenia 2 24 8.3%

Spain 8 268 3.0%
Sweden 5 160 3.1%

Switzerland 27 282 9.6%
Turkey 17 52 32.7%

United Kingdom 15 360 4.2%
United States 1,179 5,381 21.9%

Total 1,396 12,752 10.9%

Sources:
Number of listed banks: Datastream (primary quotes of major securities, actively traded as of 22/12/2015).
Number of total banks: FED St.Louis (US), www.theBanks.eu (all other countries); most recent data available as of
22/12/2015.
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Table C.3: Summary statistics of included variables

Var.Name Min. 1st Qu. Median Mean 3rd Qu. Max Data C. StD
Total assets 4.15 68.59 148.50 1242.00 338.30 157200.00 0.95 7261.19
Net interest income -48.18 0.31 0.67 3.08 1.41 361.50 0.94 15.28
LR on bank loans -0.01 0.0024 0.0041 0.0047 0.0062 0.08 0.93 0.00
LR on non bank loans -0.02 0.0069 0.0083 0.0092 0.0106 0.24 0.95 0.00
DR on bank deposits -0.05 0.0009 0.0017 0.0029 0.0031 1.00 0.92 0.01
DR on non bank deposits -0.01 0.0014 0.0025 0.0032 0.0037 0.06 0.95 0.00
Loan Loss Provision 0.00 2.90 6.38 37.77 14.41 5193.00 0.94 231.17
Tier 1 capital 0.00 6.12 13.23 91.26 28.94 14150.00 0.93 666.62
RWA 0.00 35.96 83.14 648.60 187.40 83850.00 0.95 3911.01
RWA for credit risk 0.00 32.21 73.69 581.50 168.50 78130.00 0.95 3514.58
NFCI -13.87 0.10 0.24 1.29 0.59 214.20 0.95 6.86
Bank loans 0.00 16.59 30.01 346.30 64.33 56000.00 0.95 2639.03
Loans to foreign non-banks 0.00 0.40 1.62 155.00 8.53 21200.00 0.92 1170.93
Interest bearing securities 0.00 1.92 7.87 157.80 28.35 17090.00 0.95 959.50
Bank deposits 0.00 2.99 10.60 361.60 38.28 56700.00 0.95 2798.00
Non-bank deposits 0.00 53.94 112.60 483.30 245.70 53340.00 0.95 2314.12
Securitized debt 0.00 0.00 0.00 246.80 0.00 31720.00 0.95 1859.65
Sta↵ expenses 0.00 0.20 0.44 2.15 1.04 1013.00 0.95 14.50
Other operating expenses 0.00 0.12 0.25 1.34 0.55 210.60 0.95 7.68
Number of ingoing links 0.00 1.00 1.00 4.59 1.00 390.00 0.93 23.34
Number of outgoing links 0.00 1.00 3.00 4.83 5.00 129.00 0.93 10.04
Private sector deposits 0.00 54.23 113.50 484.30 246.80 54010.00 0.95 2340.72
Private sector loans 0.00 34.44 82.26 593.10 194.30 73110.00 0.95 3262.45
Face value of derivatives 0.00 0.00 0.00 3520.00 7.75 1231000.00 0.95 37999.11
Cross border deposits 0.00 0.98 2.92 190.40 11.17 43500.00 0.95 1516.06
Cross border loans 0.00 0.88 4.14 365.60 17.37 67200.00 0.95 3000.08
First round caused losses 0.00 1.96 9.20 250.50 34.02 43810.00 0.93 1635.26
nth-round caused losses 0.00 0.00 0.00 0.12 0.00 35.93 0.93 1.00
Asset fire sales caused losses 0.00 0.00 0.00 0.15 0.00 40.59 0.93 1.37
Mark-to-market caused losses 0.00 0.00 0.00 6.97 0.00 452.40 0.93 51.02

Source: OeNB. Regulatory reporting data and credit registry data.
This table shows the summary statistics of the included variables. To improve readability all variables
with unit EUR (see Table 1) are expressed in Mio EUR.
Data C. refers to data coverage. 0.95 means that 95% of all data are available for the observation span
2008Q1 to 2016Q1.
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Table C.4: p-values of unit root tests

Variable
IPS Unit

Root

DF:
Inverse

chi-squared
(1390)

DF:
Inverse
Normal

DF:
Inverse

logit

DF:
Modified inv.
chi-squared

PP:
Inverse

chi-squared
(1390)

PP:
Inverse
Normal

PP:
Inverse

logit

PP:
Modified inv.
chi-squared

First round n.a. 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
nth-round n.a. 1.00 0.00 0.02 1.00 1.00 0.00 0.00 1.00

Asset fire sales n.a. 1.00 0.00 0.01 1.00 1.00 0.00 0.00 1.00
Mark-to-market n.a. 0.88 0.00 0.00 0.89 0.00 0.00 0.00 0.00

Total assets 0.94 0.00 1.00 1.00 0.00 0.00 0.00 0.09 0.00
Net interest income 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LR on bank loans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LR on non bank loans n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DR on bank deposits n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DR on non bank deposits n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Loan Loss Provision n.a. 0.00 0.71 0.90 0.00 0.41 1.00 1.00 0.40

Tier 1 capital 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RWA 0.13 0.04 0.99 1.00 0.04 0.00 0.00 0.00 0.00

RWA for credit risk 0.01 0.00 0.85 0.98 0.00 0.00 0.00 0.00 0.00
NFCI n.a. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bank loans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Loans to foreign non-banks n.a. 0.09 1.00 1.00 0.09 0.00 0.00 0.06 0.00

Interest bearing securities n.a. 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
Bank deposits 0.00 0.00 0.46 0.93 0.00 0.00 0.00 0.00 0.00

Non-bank deposits 0.18 0.00 0.29 0.85 0.00 0.00 0.00 0.00 0.00
Securitized debt n.a. 1.00 0.00 0.12 1.00 1.00 0.00 0.00 1.00

Sta↵ expenses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other operating expenses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Number of ingoing links n.a. 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Number of outgoing links n.a. 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Private sector deposits 0.99 0.00 1.00 1.00 0.00 0.00 0.83 0.99 0.00

Private sector loans 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 0.86
Face value of derivatives n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cross border deposits n.a. 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
Cross border loans n.a. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This table shows the p-values of three types of unit root tests. IPS refers to the Im-Pesaran-Shin test. DF
refers to Dickey-Fuller type tests. PP refers to Phillips Peron type tests. See section 4 for more details.
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Table C.5: Pooled vs. Individual e↵ects models and Fixed vs. random e↵ects models

Dependent variable Data set Kappa Breusch-Pagan p-value Honda p-value F-test p-value Hausman p-value

First round (BS 9) Basel III 0.5 206,672.27 0.00 454.61 0.00 86.01 0.00 1,210.21 0.00
First round (BS CV) Basel III 0.5 153,999.31 0.00 392.43 0.00 75.20 0.00 1,319.63 0.00

nth round (BS 9) Basel III 0.5 72,761.89 0.00 269.74 0.00 38.89 0.00 1,267.89 0.00
nth round (BS CV) Basel III 0.5 72,126.46 0.00 268.56 0.00 35.41 0.00 3,973.79 0.00

Asset fire sales (BS 9) Basel III 0.5 91,591.57 0.00 302.64 0.00 27.54 0.00 1,087.00 0.00
Asset fire sales (BS CV) Basel III 0.5 32,960.51 0.00 181.55 0.00 19.74 0.00 3,190.52 0.00

MtM (BS 9) Basel III 0.5 247,543.30 0.00 497.54 0.00 69.73 0.00 51.65 0.00
MtM (BS CV) Basel III 0.5 154,240.62 0.00 392.73 0.00 55.39 0.00 609.92 0.00

First round (BS 9) Public 0.5 426,105.39 0.00 652.77 0.00 108.68 0.00 784.83 0.00
First round (BS CV) Public 0.5 339,145.93 0.00 582.36 0.00 110.55 0.00 11,623.68 0.00

nth round (BS 9) Public 0.5 121,943.01 0.00 349.20 0.00 39.30 0.00 2,035.32 0.00
nth round (BS CV) Public 0.5 102,912.30 0.00 320.80 0.00 37.08 0.00 2,899.49 0.00

Asset fire sales (BS 9) Public 0.5 144,074.96 0.00 379.57 0.00 40.56 0.00 845.66 0.00
Asset fire sales (BS CV) Public 0.5 58,590.69 0.00 242.06 0.00 26.77 0.00 1,940.15 0.00

MtM (BS 9) Public 0.5 259,257.20 0.00 509.17 0.00 71.40 0.00 249.76 0.00
MtM (BS CV) Public 0.5 253,108.50 0.00 503.10 0.00 59.53 0.00 414.50 0.00

First round (BS 9) Extended 0.5 403,659.74 0.00 635.34 0.00 158.55 0.00 311.02 0.00
First round (BS CV) Extended 0.5 377,751.17 0.00 614.61 0.00 95.50 0.00 151.49 0.00

nth round (BS 9) Extended 0.5 157,907.81 0.00 397.38 0.00 62.35 0.00 4,127.71 0.00
nth round (BS CV) Extended 0.5 167,725.21 0.00 409.54 0.00 51.23 0.00 1,043.47 0.00

Asset fire sales (BS 9) Extended 0.5 123,689.24 0.00 351.69 0.00 33.54 0.00 795.81 0.00
Asset fire sales (BS CV) Extended 0.5 84,579.06 0.00 290.82 0.00 31.61 0.00 3,408.82 0.00

MtM (BS 9) Extended 0.5 259,257.20 0.00 509.17 0.00 71.40 0.00 249.76 0.00
MtM (BS CV) Extended 0.5 259,275.27 0.00 509.19 0.00 57.70 0.00 493.57 0.00

This table shows two group of tests. Tests that show the importance of individual e↵ects and in the last two columns
the Hausman test to decide between the random e↵ects and the fixed e↵ects model.
These tests are carried out for all model with di↵erent dependent variables (first round, nth-round, asset fire sales
and mark-to-market), di↵erent data sets (Basel III, publicly available and extended) and for both models that are
chosen with best subset selection (BS 9, model with 9 variables and BS CV, model with the lowest average mean
squared prediction error in the 10-fold cross validation)
The Breusch-Pagan Lagrange multiplier test rejects the null hypothesis that the variance of the unobserved fixed
e↵ects is zero. The Honda test is a one-sided refinement of the Breusch-Pagan test and also rejects the same null
hypothesis. The standard F-test reject the the OLS model as its null hypothesis. Finally, the Hausman test rejects
the null hypothesis that both fixed and random e↵ects models are consistent. So the fixed e↵ects model is preferred.
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Table C.6: Basel III Models for first round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.5365⇤⇤⇤ 0.5614⇤⇤⇤ 0.5253
(0.0037) (0.0031)

Private sector deposits �0.5638⇤⇤⇤ �0.4552⇤⇤⇤ �0.3109
(0.0092) (0.0082)

Private sector loans 0.2739⇤⇤⇤ 0.0097
(0.0097)

Face value of derivatives �0.0040⇤⇤⇤ �0.0048⇤⇤⇤ �0.0050
(0.0002) (0.0002)

Cross border deposits �0.4127⇤⇤⇤ �0.6025⇤⇤⇤ �0.3588
(0.0079) (0.0056)

Cross border loans �0.1745⇤⇤⇤ �0.1425
(0.0054)

Bank deposits �0.0856⇤⇤⇤ 0.0000
(0.0060)

Bank loans 0.1800⇤⇤⇤ 0.0950⇤⇤⇤ 0.0371
(0.0061) (0.0032)

Securitized debt �0.2266⇤⇤⇤ �0.2485⇤⇤⇤ �0.0922
(0.0055) (0.0056)

within R2 0.7110 0.6897
LSDV R2 0.9781 0.9765
between R2 0.9640 0.9490
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.7: Extended Models for first round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.6030⇤⇤⇤ 0.5711⇤⇤⇤ 0.4652
(0.0035) (0.0032)

Tier 1 capital �0.6251⇤⇤⇤ �0.0564
(0.0148)

RWA for credit risk �0.3113⇤⇤⇤ �0.1993
(0.0056)

Loans to foreign non-banks 0.0711⇤⇤⇤ 0.0000
(0.0088)

Interest bearing securities �0.3483⇤⇤⇤ �0.1457
(0.0078)

Other operating expenses �45.9236⇤⇤⇤ �55.3787⇤⇤⇤ 0.0000
(1.3302) (1.1321)

Number of ingoing links 9152.4194⇤⇤⇤ 0.0000
(420.6308)

Private sector deposits �0.3250⇤⇤⇤ �0.3753⇤⇤⇤ �0.0414
(0.0080) (0.0079)

Cross border deposits �0.4864⇤⇤⇤ �0.5361⇤⇤⇤ �0.3907
(0.0052) (0.0047)

RWA �0.3651⇤⇤⇤ �0.0685
(0.0052)

Private sector loans 0.2950⇤⇤⇤ 0.1113
(0.0080)

Net interest income 0.0000

LR on bank loans 0.0000

LR on non bank loans 0.0000

DR on bank deposits 0.0000

DR on non bank deposits 0.0000

Loan Loss Provision �0.2811

NFCI 0.0000

Bank loans 0.0416

Bank deposits 0.0494

Non-bank deposits �0.2424

Securitized debt 0.0000

Sta↵ expenses 0.0000

Number of outgoing links 0.0000

Face value of derivatives �0.0015

Cross border loans �0.0047

within R2 0.7371 0.7396
LSDV R2 0.9812 0.9803
between R2 0.9490 0.8787
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.8: Publicly available Models for first round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.4565⇤⇤⇤ 0.4779⇤⇤⇤ 0.3524
(0.0037) (0.0032)

Loan Loss Provision �1.0058⇤⇤⇤ �1.3751⇤⇤⇤ 0.0000
(0.0342) (0.0345)

Tier 1 capital �0.3813⇤⇤⇤ 0.0000
(0.0162)

RWA for credit risk �0.4011⇤⇤⇤ �0.4336⇤⇤⇤ �0.1797
(0.0067) (0.0066)

NFCI �41.9585⇤⇤⇤ �38.0874⇤⇤⇤ 0.0000
(1.5057) (1.5325)

Bank loans �0.0302⇤⇤⇤ 0.0103
(0.0034)

Interest bearing securities �0.6521⇤⇤⇤ �0.3479⇤⇤⇤ �0.2146
(0.0093) (0.0070)

Non-bank deposits �0.2799⇤⇤⇤ �0.2316⇤⇤⇤ �0.1940
(0.0084) (0.0084)

Securitized debt 0.3250⇤⇤⇤ 0.0016
(0.0075)

Net interest income 0.0000

RWA �0.0286

Loans to foreign non-banks 0.0000

Bank deposits 0.0000

Sta↵ expenses 0.0000

Other operating expenses 0.0000

within R2 0.6519 0.6162
LSDV R2 0.9740 0.9709
between R2 0.9172 0.8905
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.9: Basel III Model for nth-round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.3485⇤⇤⇤ 0.2980⇤⇤⇤ 0.1912
(0.0034) (0.0031)

Private sector deposits �0.4040⇤⇤⇤ �0.4388⇤⇤⇤ 0.0000
(0.0085) (0.0084)

Private sector loans 0.2528⇤⇤⇤ 0.3257⇤⇤⇤ 0.0000
(0.0089) (0.0086)

Face value of derivatives �0.0031⇤⇤⇤ �0.0038
(0.0002)

Cross border deposits �0.1447⇤⇤⇤ 0.0000
(0.0073)

Cross border loans �0.1942⇤⇤⇤ �0.2804⇤⇤⇤ 0.0000
(0.0050) (0.0036)

Bank deposits �0.1329⇤⇤⇤ �0.1759⇤⇤⇤ 0.0000
(0.0055) (0.0051)

Bank loans 0.1868⇤⇤⇤ 0.2042⇤⇤⇤ 0.0000
(0.0056) (0.0052)

Securitized debt �0.0860⇤⇤⇤ 0.0000
(0.0051)

within R2 0.5851 0.5630
LSDV R2 0.9509 0.9483
between R2 0.9618 0.9546
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.10: Extended Models for nth-round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.4494⇤⇤⇤ 0.4316⇤⇤⇤ 0.2996
(0.0030) (0.0027)

Loan Loss Provision �0.8523⇤⇤⇤ 0.0000
(0.0281)

Tier 1 capital �0.3506⇤⇤⇤ 0.0000
(0.0129)

RWA for credit risk �0.3544⇤⇤⇤ �0.3356⇤⇤⇤ �0.2126
(0.0053) (0.0051)

NFCI �14.9072⇤⇤⇤ 0.0000
(1.3499)

Loans to foreign non-banks �0.0158 0.0000
(0.0084)

Interest bearing securities �0.1960⇤⇤⇤ �0.0112
(0.0073)

Other operating expenses �18.2466⇤⇤⇤ �36.1491⇤⇤⇤ 0.0000
(1.2599) (1.0441)

Cross border deposits �0.2795⇤⇤⇤ �0.3464⇤⇤⇤ �0.1560
(0.0048) (0.0044)

Net interest income 0.0000

LR on bank loans 0.0000

LR on non bank loans 0.0000

DR on bank deposits 0.0000

DR on non bank deposits 0.0000

RWA �0.0407

Bank loans 0.0650

Bank deposits 0.0000

Non-bank deposits �0.1165

Securitized debt 0.0000

Sta↵ expenses 0.0000

Number of ingoing links 0.0000

Number of outgoing links 0.0000

Private sector deposits 0.0000

Private sector loans 0.0542

Face value of derivatives �0.0007

Cross border loans �0.0208

within R2 0.6155 0.5977
LSDV R2 0.9582 0.9524
between R2 0.9262 0.9001
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.11: Publicly available Models for nth-round caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.3418⇤⇤⇤ 0.3279⇤⇤⇤ 0.2729
(0.0030) (0.0025)

Net interest income �17.0605⇤⇤⇤ 0.0000
(0.5563)

Loan Loss Provision �1.1411⇤⇤⇤ �1.1544⇤⇤⇤ 0.0000
(0.0279) (0.0280)

Tier 1 capital �0.1260⇤⇤⇤ 0.0000
(0.0130)

RWA for credit risk �0.3781⇤⇤⇤ �0.3983⇤⇤⇤ �0.1588
(0.0056) (0.0055)

NFCI �17.0403⇤⇤⇤ 0.0000
(1.2649)

Interest bearing securities �0.1825⇤⇤⇤ �0.0740
(0.0063)

Bank deposits 0.0215⇤⇤⇤ 0.0000
(0.0024)

Non-bank deposits �0.1288⇤⇤⇤ �0.1987⇤⇤⇤ �0.1136
(0.0069) (0.0069)

RWA �0.0714

Bank loans 0.0043

Loans to foreign non-banks 0.0000

Securitized debt 0.0009

Sta↵ expenses 0.0000

Other operating expenses 0.0000

within R2 0.5801 0.5286
LSDV R2 0.9530 0.9458
between R2 0.9554 0.9335
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.12: Basel III Models for asset fire sales caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.5155⇤⇤⇤ 0.4801⇤⇤⇤ 0.2327
(0.0052) (0.0040)

Private sector deposits �0.5496⇤⇤⇤ �0.4170⇤⇤⇤ 0.0000
(0.0130) (0.0116)

Private sector loans 0.2169⇤⇤⇤ 0.0000
(0.0137)

Face value of derivatives �0.0068⇤⇤⇤ �0.0077⇤⇤⇤ �0.0030
(0.0002) (0.0002)

Cross border deposits �0.1990⇤⇤⇤ �0.3835⇤⇤⇤ 0.0000
(0.0111) (0.0075)

Cross border loans �0.2108⇤⇤⇤ 0.0000
(0.0076)

Bank deposits �0.1531⇤⇤⇤ 0.0000
(0.0085)

Bank loans 0.2682⇤⇤⇤ 0.0703⇤⇤⇤ 0.0000
(0.0086) (0.0036)

Securitized debt �0.1594⇤⇤⇤ 0.0000
(0.0078)

within R2 0.5640 0.5311
LSDV R2 0.9370 0.9322
between R2 0.9723 0.9344
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.13: Extended Models for asset fire sales caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.6218⇤⇤⇤ 0.5153⇤⇤⇤ 0.5230
(0.0050) (0.0037)

Loan Loss Provision �0.9477⇤⇤⇤ �1.5744⇤⇤⇤ �1.0654
(0.0424) (0.0436)

Tier 1 capital �0.4658⇤⇤⇤ �0.4381
(0.0191)

RWA for credit risk �0.5533⇤⇤⇤ �0.6262⇤⇤⇤ �0.5238
(0.0081) (0.0080)

NFCI �22.0063⇤⇤⇤ �41.1485⇤⇤⇤ �2.2894
(1.9688) (1.8662)

Bank loans 0.0317⇤⇤⇤ 0.1478
(0.0045)

Loans to foreign non-banks 0.0215 0.1097
(0.0126)

Other operating expenses �44.8772⇤⇤⇤ �25.0520⇤⇤⇤ �30.3862
(1.8519) (1.7413)

Cross border deposits �0.3841⇤⇤⇤ �0.2108
(0.0070)

Net interest income 8.1899

LR on bank loans 0.0000

LR on non bank loans 0.0000

DR on bank deposits 0.0000

DR on non bank deposits 0.0000

RWA 0.0164

Interest bearing securities 0.0318

Bank deposits �0.0508

Non-bank deposits �0.2349

Securitized debt �0.0597

Sta↵ expenses 3.7822

Number of ingoing links 0.0000

Number of outgoing links 0.0000

Private sector deposits �0.0439

Private sector loans 0.2098

Face value of derivatives �0.0018

Cross border loans �0.0700

within R2 0.6117 0.5532
LSDV R2 0.9475 0.9367
between R2 0.9669 0.9242
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.14: Publicly available Models for asset fire sales caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 0.5178⇤⇤⇤ 0.5127⇤⇤⇤ 0.4271
(0.0042) (0.0037)

Loan Loss Provision �0.9940⇤⇤⇤ �1.3159⇤⇤⇤ 0.0000
(0.0440) (0.0427)

Tier 1 capital �0.5354⇤⇤⇤ 0.0000
(0.0191)

RWA for credit risk �0.5622⇤⇤⇤ �0.6628⇤⇤⇤ �0.4033
(0.0080) (0.0080)

NFCI �41.8255⇤⇤⇤ 0.0000
(1.8219)

Interest bearing securities �0.4523⇤⇤⇤ �0.1121
(0.0112)

Non-bank deposits �0.2274⇤⇤⇤ �0.2177
(0.0102)

Securitized debt 0.2768⇤⇤⇤ 0.0492
(0.0082)

Other operating expenses �11.6291⇤⇤⇤ �31.5913⇤⇤⇤ 0.0000
(1.8378) (1.7582)

Net interest income 0.0000

RWA �0.0501

Bank loans 0.0598

Loans to foreign non-banks 0.0000

Bank deposits 0.0000

Sta↵ expenses 0.0000

within R2 0.5945 0.5418
LSDV R2 0.9444 0.9349
between R2 0.9712 0.9094
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.15: Basel III Models for mark-to-market caused losses

Basel III Size Best Subset CV Lasso CV

Total assets 5.1744⇤⇤⇤ 4.3813⇤⇤⇤ 2.7625
(0.2888) (0.1820)

Private sector deposits �5.0418⇤⇤⇤ 0.0000
(0.7244)

Private sector loans �5.3212⇤⇤⇤ 0.0000
(0.7630)

Face value of derivatives �0.0324⇤ 0.0000
(0.0134)

Cross border deposits �5.0913⇤⇤⇤ �3.6563⇤⇤⇤ 0.0000
(0.6217) (0.3820)

Cross border loans 2.4636⇤⇤⇤ 0.0000
(0.4262)

Bank deposits �0.3376 0.0000
(0.4734)

Bank loans �1.1155⇤ 0.0000
(0.4815)

Securitized debt 1.7501⇤⇤⇤ 0.0000
(0.4364)

within R2 0.0420 0.0325
LSDV R2 0.8609 0.8603
between R2 0.8402 0.5958
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.16: Extended Models for mark-to-market caused losses

Basel III Size Best Subset CV Lasso CV

Loan Loss Provision �23.8163⇤⇤⇤ �32.4542⇤⇤⇤ 0.0000
(2.6051) (2.1732)

Tier 1 capital �1.9495 0.0000
(1.1338)

RWA �7.7921⇤⇤⇤ 0.0000
(1.0937)

RWA for credit risk 9.6446⇤⇤⇤ 0.0000
(1.1510)

NFCI �643.5561⇤⇤⇤ 0.0000
(120.1842)

Loans to foreign non-banks 7.4153⇤⇤⇤ 0.0000
(0.9417)

Securitized debt 9.4237⇤⇤⇤ 3.6423
(0.5080)

Other operating expenses �1160.0154⇤⇤⇤ 0.0000
(114.5010)

Private sector loans �5.7988⇤⇤⇤ 0.0000
(0.7863)

Total assets 2.5709⇤⇤⇤ 1.5540
(0.1321)

Net interest income 0.0000

LR on bank loans 0.0000

LR on non bank loans 0.0000

DR on bank deposits 0.0000

DR on non bank deposits 0.0000

Bank loans 0.0000

Interest bearing securities 0.0000

Bank deposits 0.0000

Non-bank deposits 0.0000

Sta↵ expenses 0.0000

Number of ingoing links 0.0000

Number of outgoing links 0.0000

Private sector deposits 0.0000

Face value of derivatives 0.0043

Cross border deposits 0.0000

Cross border loans 0.0000

within R2 0.0536 0.0373
LSDV R2 0.8625 0.8601
between R2 0.7050 0.5844
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.17: Publicly available Models for mark-to-market caused losses

Basel III Size Best Subset CV Lasso CV

Net interest income �329.8432⇤⇤⇤ 0.0000
(53.8463)

Loan Loss Provision �20.7173⇤⇤⇤ �32.4542⇤⇤⇤ 0.0000
(2.6242) (2.1732)

RWA �8.2229⇤⇤⇤ 0.0000
(1.0778)

RWA for credit risk 9.5955⇤⇤⇤ 0.0000
(1.1367)

NFCI �631.9773⇤⇤⇤ 0.0000
(114.5604)

Loans to foreign non-banks 6.0518⇤⇤⇤ 0.0000
(0.8254)

Non-bank deposits �4.5543⇤⇤⇤ 0.0000
(0.6628)

Securitized debt 8.1622⇤⇤⇤ 2.1425
(0.5015)

Other operating expenses �1047.4271⇤⇤⇤ 0.0000
(113.8635)

Total assets 2.5709⇤⇤⇤ 1.9368
(0.1321)

Tier 1 capital 0.0000

Bank loans 0.0000

Interest bearing securities 0.0000

Bank deposits 0.0000

Sta↵ expenses 0.0000

within R2 0.0546 0.0373
LSDV R2 0.8619 0.8601
between R2 0.7138 0.5844
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.18: Robustness Checks: Model for asset fire sales caused losses

Basel III kappa 0.4 Basel III kappa 0.6 Public kappa 0.4 Public kappa 0.6 Extended kappa 0.4 Extended kappa 0.6

Total assets 0.4785⇤⇤⇤ 0.5573⇤⇤⇤ 0.4748⇤⇤⇤ 0.5649⇤⇤⇤ 0.6175⇤⇤⇤ 0.6744⇤⇤⇤
(0.0047) (0.0057) (0.0040) (0.0046) (0.0040) (0.0055)

Private sector deposits �0.5120⇤⇤⇤ �0.5908⇤⇤⇤
(0.0117) (0.0144)

Private sector loans 0.2267⇤⇤⇤ 0.1983⇤⇤⇤
(0.0123) (0.0152)

Face value of derivatives �0.0059⇤⇤⇤ �0.0080⇤⇤⇤
(0.0002) (0.0003)

Cross border deposits �0.1847⇤⇤⇤ �0.2231⇤⇤⇤ �0.3279⇤⇤⇤ �0.4023⇤⇤⇤
(0.0100) (0.0124) (0.0064) (0.0077)

Cross border loans �0.2117⇤⇤⇤ �0.2023⇤⇤⇤
(0.0069) (0.0085)

Bank deposits �0.1484⇤⇤⇤ �0.1557⇤⇤⇤ 0.0081⇤
(0.0076) (0.0094) (0.0034)

Bank loans 0.2498⇤⇤⇤ 0.2841⇤⇤⇤ 0.0393⇤⇤⇤
(0.0078) (0.0096) (0.0049)

Securitized debt �0.1432⇤⇤⇤ �0.1744⇤⇤⇤ 0.2514⇤⇤⇤ 0.2896⇤⇤⇤
(0.0070) (0.0087) (0.0078) (0.0090)

Loan Loss Provision �1.0337⇤⇤⇤ �1.0401⇤⇤⇤ �0.9120⇤⇤⇤ �0.9827⇤⇤⇤
(0.0379) (0.0485) (0.0379) (0.0468)

Tier 1 capital �0.4858⇤⇤⇤ �0.5755⇤⇤⇤ �0.5295⇤⇤⇤ �0.5136⇤⇤⇤
(0.0177) (0.0210) (0.0174) (0.0211)

RWA for credit risk �0.5098⇤⇤⇤ �0.6228⇤⇤⇤ �0.5109⇤⇤⇤ �0.6137⇤⇤⇤
(0.0073) (0.0088) (0.0071) (0.0089)

NFCI �38.3384⇤⇤⇤ �47.0356⇤⇤⇤ �29.8664⇤⇤⇤ �26.6123⇤⇤⇤
(1.6698) (2.0086) (1.8210) (2.1726)

Interest bearing securities �0.4508⇤⇤⇤ �0.4495⇤⇤⇤ �0.2088⇤⇤⇤
(0.0101) (0.0123) (0.0098)

Non-bank deposits �0.2221⇤⇤⇤ �0.2427⇤⇤⇤
(0.0092) (0.0112)

Other operating expenses �16.9478⇤⇤⇤ �32.4699⇤⇤⇤ �51.3330⇤⇤⇤
(2.0262) (1.6997) (2.0437)

Loans to foreign non-banks 0.0021 0.0268
(0.0113) (0.0139)

within R2 0.5771 0.5498 0.6005 0.5875 0.6259 0.6060
LSDV R2 0.9419 0.9312 0.9481 0.9401 0.9522 0.9434
between R2 0.9729 0.9709 0.9692 0.9712 0.9458 0.9688
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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Table C.19: Robustness Checks: Model for mark-to-market sum caused losses

Basel III kappa 0.4 Basel III kappa 0.6 Public kappa 0.4 Public kappa 0.6 Extended kappa 0.4 Extended kappa 0.6

Total assets 4.2232⇤⇤⇤ 5.3323⇤⇤⇤ 1.7986⇤⇤⇤ 2.8544⇤⇤⇤ 1.8061⇤⇤⇤ 3.6220⇤⇤⇤
(0.1448) (0.4755) (0.1354) (0.4133) (0.1437) (0.4092)

Private sector deposits 0.0167 �1.0508
(0.3632) (1.1927)

Private sector loans �0.2445 �3.2410⇤⇤
(0.3826) (1.2563)

Face value of derivatives 0.0368⇤⇤⇤ �0.0079
(0.0067) (0.0220)

Cross border deposits �2.3469⇤⇤⇤ �5.4532⇤⇤⇤
(0.3117) (1.0236)

Cross border loans �0.4147 0.9704 �2.5981⇤⇤⇤ �3.3348⇤⇤⇤
(0.2137) (0.7017) (0.1564) (0.5829)

Bank deposits �0.0813 1.5174 0.6372⇤⇤ 1.6694⇤⇤⇤
(0.2373) (0.7794) (0.1968) (0.2066)

Bank loans �0.1416 �1.5162 �0.7598⇤⇤⇤ �0.9048⇤⇤⇤
(0.2414) (0.7928) (0.2110) (0.2145)

Securitized debt 1.7740⇤⇤⇤ �0.9411 2.8880⇤⇤⇤
(0.2188) (0.7185) (0.2123)

Loan Loss Provision �21.4570⇤⇤⇤ �32.7984⇤⇤⇤ �24.7129⇤⇤⇤ �44.1976⇤⇤⇤
(1.1833) (4.2048) (1.2496) (4.0859)

Tier 1 capital 5.8000⇤⇤⇤ 5.0698⇤⇤
(0.5530) (1.9165)

RWA �5.0213⇤⇤⇤ �10.6517⇤⇤⇤ �8.2350⇤⇤⇤
(0.5438) (1.8815) (1.8111)

RWA for credit risk 8.9481⇤⇤⇤ 10.2281⇤⇤⇤ 5.4670⇤⇤⇤ 7.8610⇤⇤⇤
(0.5636) (1.9337) (0.2402) (1.8665)

NFCI �1063.7493⇤⇤⇤ �1253.6256⇤⇤⇤ �895.1605⇤⇤⇤ �1056.3192⇤⇤⇤
(54.3243) (178.7914) (52.6922) (174.1498)

Net interest income �173.4305⇤
(80.9010)

Interest bearing securities 5.1431⇤⇤⇤ 6.0347⇤⇤⇤
(0.9185) (0.9096)

Other operating expenses �590.5983⇤⇤ �614.9703⇤⇤⇤
(179.9122) (171.4666)

Non-bank deposits 1.7661⇤⇤⇤
(0.3062)

Number of ingoing links 371711.0815⇤⇤⇤
(15612.7228)

Number of outgoing links 1818774.9316⇤⇤⇤
(107417.2429)

within R2 0.1620 0.0130 0.1940 0.0176 0.2170 0.0312
LSDV R2 0.9067 0.8329 0.9085 0.8348 0.9113 0.8356
between R2 0.8688 0.8316 0.7924 0.7630 0.7986 0.7349
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05
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