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It is often claimed that Artificial Intelligence (AI) is the next general purpose
technology (GPT) with profound economic and societal impacts. However,
without a consensus definition of AI and its empirical measurement, there are
wide discrepancies in beliefs about its trajectory, di�usion, and ownership.
In this study, we compare four AI patent classification approaches reflecting
di�erent technological trajectories, namely (1) short-range, (2) academic, (3)
technical, and (4) broad interpretations of AI. We use US patents granted
between 1990-2019 to assess the extent to which each approach qualifies AI
as a GPT, and study patterns of its concentration and agency. Strikingly,
the four trajectories overlap on only 1.36% of patents and vary in scale,
accounting for shares of 3-17% of all US patents. Despite capturing the
smallest set of AI patents, the short-range trajectory identified by the latest
AI keywords demonstrates the strongest GPT characteristics of high intrinsic
growth and generality. All trajectories agree, however, that AI inventions
are highly concentrated within a few firms and this has consequences for
competition policy and market regulation. Our study highlights how various
methods of defining AI can lead to contrasting as well as similar conclusions
about its impact.
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Highlights

• We compare 4 di�erent technological trajectories of AI patents (short-range, aca-
demic, technical, broad view).

• The 4 trajectories di�er by growth and scale (60k-600k patents), and overlap in
only 1.36%.

• All trajectories exhibit GPT characteristics (growth, generality, complementarity).

• The keyword-based short-range trajectory performs best to reproduce GPT char-
acteristics.

• Concentration of a few leading innovative firms is consistent across the di�erent
trajectories.

• Conclusions about the growth and impact of AI may be sensitive to choice of
trajectory.

3



Contents
1 Introduction 6

2 Background 8
2.1 What is a GPT, and does it matter for AI? . . . . . . . . . . . . . . . . . 8
2.2 AI history and di�erent technological trajectories . . . . . . . . . . . . . . 9

2.2.1 Technological trajectories of AI . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Patents as a data source . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Approach 11

4 Results 12
4.1 General Characteristics of AI trajectories . . . . . . . . . . . . . . . . . . . 12
4.2 GPT Characteristics of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Market Power of AI-producing Firms . . . . . . . . . . . . . . . . . . . . . 23

5 Discussion 24
5.1 General Purpose Technology indicators for Technological Trajectories . . . 26
5.2 Concentration of AI inventions and political implications . . . . . . . . . . 26
5.3 Results in a Wider Context . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Limitations of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Concluding Remarks 29

A Measuring GPTs 35
A.1 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.3 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Measuring AI 37
B.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Keyword search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.3 Science Citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.4 World Intellectual Property Organisation (WIPO) Method . . . . . . . . . 39
B.5 United States Patent and Trademark O�ce (USPTO) Classification . . . 40

C List of Keywords Used in Keyword Approach 41

D A Study of AI Keywords in Patent Texts 41

E Additional Results 45
E.1 Comparison to Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



E.1.1 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
E.1.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
E.1.3 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

E.2 Significance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
E.2.1 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
E.2.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
E.2.3 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

E.3 Extra Tables Moved Down . . . . . . . . . . . . . . . . . . . . . . . . . . 68
E.3.1 Volume and Time Trends . . . . . . . . . . . . . . . . . . . . . . . 68
E.3.2 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
E.3.3 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

E.4 Generality of AI Descendants . . . . . . . . . . . . . . . . . . . . . . . . . 70

5



1. Introduction
Artificial intelligence (AI) is often claimed to be the next general purpose technology
(GPT) that will shape the technological and economic evolution of the 21st century
(Agrawal et al., 2019; Cockburn et al., 2019; Brynjolfsson et al., 2021). AI is expected
to a�ect a wide range of industries through its ability to augment and complement
products and processes (Brynjolfsson and T. Mitchell, 2017; Cockburn et al., 2018), as
epitomised by the release of ChatGPT in November 2022. Researchers predict radical
impacts on labour markets producing winners and losers (Trajtenberg, 2018), with some
estimating that the technology may render 47% of existing jobs in the US obsolete (Frey
and Osborne, 2017). On the other hand, AI optimists envision that, if firms up-skill
workers and adapt their business to exploit AI, rising productivity will expand output,
transform occupational task structures and stimulate long-run employment that will
help overcome some of the 21st century’s greatest challenges (Gries and Naude, 2018;
Acemoglu et al., 2020).

Research on the impact of AI requires robust measures of AI di�usion (Valdes and
Rudyk, 2017; Webb, 2019; Alderucci et al., 2020). However, the ex-ante scientific mea-
surement of radical novelty is one of the greatest challenges for scholars of technological
change (Schumpeter, 2005). AI development and di�usion is widely believed to still be at
an early stage (Brynjolfsson et al., 2021), and it is not yet clear how the technology will
impact long-run economic variables. Moreover, a consensus about a clear technological
trajectory of AI has not yet emerged (Jacobides et al., 2021).

Patents provide a quantitative and qualitative track-record of inventions and are often
used to analyse innovation: patent classifications that associate patents with technolog-
ical fields provide insights into the trajectories of technological change (Ja�e and De
Rassenfosse, 2019). As AI inventions spread through the economy, existing classification
schemes may be unfit to capture complex technological networks with many mutual de-
pendencies (Hall and Trajtenberg, 2006; Petralia, 2020). Furthermore, AI’s definition is
itself a product of the scale and scope of its use within the current political economy,
as it is delineated by those developing, using, and investing in it. Measuring AI’s di�u-
sion is important for more than investment, as barriers to entry and economies of scale
raise concerns about market and political power if AI invention and innovation become
increasingly concentrated within a few key actors (Petit, 2017; Jacobides et al., 2021;
Fanti et al., 2022).

In this paper, we use four distinct methods of classifying AI inventions to assemble
and compare four sets of patents corresponding to di�erent AI trajectories. Specifically,
we compare methods based on:

1. keywords focusing on recent trends in neural networks, robotics, and natural lan-
guage processing (NLP);

2. scientific citations reflecting the academic origins of AI;

3. the World Intellectual Property Organization (WIPO) classification method ac-
counting for both the hardware and software dimensions of AI; and
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4. the United States Patent and Trademark O�ce (USPTO) approach capturing the
widespread use of AI in other inventions.

By these trajectories, we identify a total of 736k AI patents from 1990 to 2019, al-
though this varies greatly: 67k patents are captured by keywords, 178k by science ci-
tations, 159k by the WIPO, and 595k by the USPTO approach. Strikingly, all four
trajectories agree on only 1.36% of AI patents with pairwise overlaps of 20% or less
throughout the entire period. Additionally, the four approaches also reflect disparate
trends of AI inventions over time, with the Science and USPTO approaches demon-
strating a slow-down in recent years that contrasts the continued growth observed in
Keyword and WIPO patents.

We then evaluate each approach according to the three GPT characteristics proposed
by Bresnahan and Trajtenberg (1995), Hall and Trajtenberg (2006), and Petralia (2020):

1. GPTs are engines of growth with a wide scope for technical improvement (Petralia,
2020). For each of our four AI pathways, we measure this feature by calculating
the growth rates of patents, as well as the growth rates of patents that rely on
these AI inventions (indicated by citation links). GPTs would show positive or
accelerating growth.

2. GPTs can be used across a wide range of products and processes. To measure
this, we examine the technological diversity of patent citations. Historically, GPTs
experience delays of up to forty years before becoming widely utilised throughout
the economy (Comin and Mestieri, 2018). Following Hall and Trajtenberg (2006),
we therefore measure the citation lag between AI and subsequent inventions.

3. GPTs complement extant and novel technologies by transforming myriad produc-
tion processes (Petralia, 2020). We measure this by studying the diversity of co-
classifications of AI patents across di�erent technology groups. A high diversity
suggests that AI complements a wide range of technological fields.

Furthermore, we also analyse how each approach frames the agency dimension of AI
invention by comparing the contribution of key actors across industries, research centres
and the public sector.

Given the heterogeneity of these trajectories and the lack of a clear definition of AI
(Kra�t et al., 2020), we do not aim to identify the best method of measuring AI. Instead,
we highlight how the choice of trajectory alters the projections of GPT characteristics
of AI, and its industrial concentration, both of which are central aspects to investment
and to the current political and academic debate.

The rest of our paper is structured as follows: Section 2 describes previous attempts
to measure GPTs and AI in patent data, while Section 3 introduces our own approach.
Our results are presented in Section 4, followed by a discussion in Section 5. Section
6 concludes. Appendix A provides details on the data and methods, and Appendix B
describes the four approaches to tracking AI’s trajectory.
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2. Background
Here, we review the arguments for AI being a GPT, discuss their limitations and intro-
duce the use of patent data to study AI technological trajectories.

2.1. What is a GPT, and does it matter for AI?
Bresnahan and Trajtenberg (1995) introduce the concept of a GPT as a technology which
pervades the economy and spurs inventions, both endogenously and through complemen-
tarities. Well-established GPTs, such as electricity and Information and Communication
Technologies (ICT), are considered as drivers of growth and technological progress. Much
research has focused on their identification in quantitative data. GPTs are said to share
three characteristics: pervasiveness throughout the economy, capacity for rapid intrin-
sic improvement, and the ability to spawn spillover productivity across sectors though
complementarities (Bresnahan and Trajtenberg, 1995; Lipsey et al., 2005).

The first of these criteria refers to GPTs’ ability to engender new methods of pro-
duction or innovation. Due to their pervasiveness, GPTs inspire a wave of technological
inventions as they embody new universal tools for production and research. Many im-
pactful technologies, such as nuclear power and fMRI, lack the generality required to
pervade a significant number of sectors (Agrawal et al., 2018; Brynjolfsson et al., 2019).

The second criterion refers to GPTs’ inherent capacity to rapidly improve. The final
criterion captures how GPTs spawn productivity spillovers across a range of industries
through their ability to augment and complement extant products and processes. Indeed,
many GPTs act as agents of creative destruction by restructuring established processes
throughout the economy (Lipsey et al., 2005).

Altogether, these criteria necessitate a longer time period for GPTs to evolve, spread
and unleash their full economic impact (Lipsey et al., 2005). However, once they have
su�ciently evolved, GPTs rely on supporting infrastructure and secondary inventions in
order to restructure production processes throughout the economy.

Recent work has raised potential issues with conceptualising AI as a GPT from a
policy perspective. Bresnahan and Trajtenberg (1995) argue that GPTs could create
market failures because they are useful everywhere (public good characteristics), which
may generate lost social gains due to underinvestment. However, it is unclear whether AI
represents a single GPT or is an amalgamation of many technologies that fulfill di�erent
functions, including data provision, prediction, classification, soft- and hardware, and
edge applications (Jacobides et al., 2021). As such, the study of GPTs may need to be
broadened to include key actors that shape technological evolution.

The concentration of AI development within a few key players (Klinger et al., 2022;
Babina et al., 2023) has raised concerns about the power of Big Tech (Jacobides et al.,
2021) and hubs (Klinger et al., 2022). Indeed, this concentration has raised doubts about
the need for AI to be publicly funded, (as proclaimed by the GPT perspective (Jaco-
bides et al., 2021)), as this may entrench existing asymmetries in the absence of further
intervention from competition policy and market regulation (Petit, 2017; Hennemann,
2020).
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In this paper, we analyse whether these concerns are consistent with four di�erent
theoretical perspectives on AI. We begin by introducing these classification approaches
and then analyse the trajectories of AI innovations they define. Comparing multiple
definitions of AI in this way serves many purposes: firstly, di�erent definitions of AI
impact the timescale it is viewed on and the perceived history of its trajectory. Secondly,
theoretical approaches will di�er in how they identify key actors shaping AI innovation
and the impact on market power. Thirdly, the choice of definition and technological
trajectory may spur di�ering guidance on the direction of funding and investment to AI
technologies.

2.2. AI history and di�erent technological trajectories
Broadly speaking, AI is concerned with systems and technologies associated with intel-
ligence. As there is no consensus around a precise definition of AI, research evaluating
AI as a GPT and its impact has this as an open and often unaddressed question.

The conceptual roots of AI stem back to Alan Turing (Turing, 1950) in the 1950s,
when a series of inventions in the following decades led to breakthroughs in the ability
of computers to perform reasoning and solve complex problems. High expectations
coupled with limited computing power and funding withdrawal saw a slowdown in AI
development during both the late 1970s and again in the 1990s, forming periods now
referred to as ‘AI winters’ (Stuart and Norvig, 2003).

Modern AI (at latest, since the mid 2000s) is to a large degree based on machine
learning, or computational approaches to detecting and modeling patterns in various
data sources (T. M. Mitchell et al., 2007). Machine learning builds upon computer
science, statistics, probability and optimisation. As machine learning methods are often
paired with sensors, actuators, and controls to create intelligent systems, the mix of
machine learning software with computer hardware has been considered as one way to
build AI systems. From a historical perspective, AI has been associated with several
technological trends occurring broadly on three di�erent time-scales.

First, from a long-range perspective (decades to centuries), AI can be viewed as being
only the latest step in a long trend towards technological automation (Aghion et al.,
2018). Historically, technologies such as the thermostat and the microprocessor enabled
breakthroughs in automation based on physics and general digital control, creating the
possibility to perform automated tasks, e.g., counting. Modern AI can therefore be
considered as the outcome of the long-term co-evolution of hardware, software, and
networking technologies including the internet (Bonaccorsi and Moggi, 2020).

Second, from a mid-range perspective (decades), AI is associated with many more
modern forms of computing. This AI includes systems based on digital sensors and
actuators that are paired with computational methods to perform tasks previously as-
sociated with human-like intelligence. Such a view relates AI to technologies beyond
machine learning. As a specific example, the modern standard textbook for AI describes
technological systems that receive percepts from the environment and take actions that
a�ect that environment (Stuart and Norvig, 2003). The notion that AI is broader than
the latest trends in machine learning is also referred to as “the good old-fashioned AI”.
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Third, from a short-range perspective (years to a decade) AI is believed to consist
of the latest developments in machine learning, involving natural language processing,
computer vision, and deep learning. Recent work Bianchini et al. (2020), Klinger et
al. (2022), Jurowetzki et al. (2021), and Whittaker (2021) contends that modern AI
research is being rapidly privatised and narrowed towards deep learning (DL) at the
expense of other relatively unexplored domains. However, it remains to be seen whether
this narrowing will impact on the ability of this modern definition to capture the full
scope of future AI inventions that may include sub-fields that are, at present, relatively
unexplored.

Given the complexity of defining AI, which view should a policy-oriented analysis
take? Clearly, there is some arbitrariness of choice here. To review a recent example,
the proposed EU AI Act (European Commission, 2021) illustrates the balance between
including the latest developments in machine learning, with well-established methods
from other disciplines in AI’s definition. In the proposed EU AI Act, AI is defined as,

software that is developed with one or more of the techniques and ap-
proaches listed in Annex I and can, for a given set of human-defined ob-
jectives, generate outputs such as content, predictions, recommendations, or
decisions influencing the environments they interact with

and these techniques and approaches are further specified (Annex I, European Com-
mission, 2021) as,

(a) Machine learning approaches, including supervised, unsupervised and re-
inforcement learning, using a wide variety of methods including deep learn-
ing;
(b) Logic- and knowledge-based approaches, including knowledge represen-
tation, inductive (logic) programming, knowledge bases, inference and de-
ductive engines, (symbolic) reasoning and expert systems;
(c) Statistical approaches, Bayesian estimation, search and optimisation meth-
ods.

Clearly, the scope of AI here includes mathematics, statistics, optimisation and com-
puter science. In other words, it appears as though AI policy in the EU may be guided
by the mid-range definition of the technology.

2.2.1. Technological trajectories of AI

These di�ering perspectives on AI are ultimatley associated with di�erent technological
trajectories (Dosi, 1988). Trajectories are innovative activities characterised by being,

• selective: focusing on some specific means (e.g., means to fulfil a human purpose);

• precise: narrow in their directions;

• cumulative: providing increased problem-solving capabilities.
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In other words, technological trajectories serve as uncertainty-reducing representa-
tions for communities studying them (Bonaccorsi and Moggi, 2020). Although AI has
previously been associated with technological trajectories, (Fanti et al., 2022; Iori et al.,
2021), we aim to show how four technical trajectories of AI di�er in their conclusions
regarding the projected impact and spread of AI, as well as what role it will play in
current political and economic debates, investment and projections.

2.2.2. Patents as a data source

In our study, we use patent data to investigate overlaps and divergences in the charac-
teristics and ownership between four AI trajectories. Patents are detailed track records
of inventions and require the disclosure of the technological knowledge embodied in the
patented invention. Patent o�ces hold stock of millions of patents assigned to di�erent
technological fields using hierarchical patent classification systems. One patent can be
classified into a variety of technology fields, which describe the nature of the patented
technology (Ja�e and De Rassenfosse, 2019). Patents have been previously been used
to study AI inventions for technological trajectories on the level of individual patent
citation networks (Iori et al., 2021), as well as AI inventions in the aggregate (WIPO,
2019b; Verendel, 2023).

Moreover, patent data is well-suited to the study of technological trajectories. Patents
are typically organised around protected claims (selective in functionality), which must
be highly specific (being precise) and novel (cumulative in problem-solving capabilities).
Additionally, patents are assigned to one or more codes from hierarchical patent classi-
fication systems, such as the Cooperative Patent Classification system developed by the
European and US patent o�ce.1 These codes help describe the qualitative nature of a
patent, for example whether it is related to specific computing techniques or hardware
for data transmission. Patent documents also include citation links to other patents and,
in some cases, academic articles. This helps distinguish the patented invention from pre-
vious inventions and inventors are required to establish the novelty of their invention
compared to existing technologies. These citations are frequently used by innovation
scholars as they reveal the cumulative dependencies between technologies, and may be
interpreted as an indicator for the extent to which an invention builds on previous tech-
nological knowledge (Ja�e and De Rassenfosse, 2019). Previous discussions of AI as a
GPT have also used patent data (Cockburn et al., 2018) and firm-level non-patent data
(Klinger et al., 2018), both of which we detail below.

3. Approach
In our analysis, we compare the GPT characteristics of four sets of AI patents iden-
tified by distinct classification techniques, reflecting di�erent technological trajectories
associated with AI. More specifically, we contrast the estimated growth, generality and
complementarity of AI patents classified by either (1) keywords, (2) science citations,

1https://worldwide.espacenet.com/patent/cpc-browser#
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(3) the WIPO, and the (4) USPTO method from all USPTO patents granted from
1990-2019.

First, the Keyword method is replicated from Cockburn et al. (2018) and relies on
text search terms (NLP, robotics, neural networks). This approach reflects short-term
perspectives on AI and attributes it’s progress to themes that became dominant over
the past decade.

Second, using scientific citations to AI research (including grey literature and confer-
ence proceedings) Marx and Fuegi (2020) conceptualises AI technologies as an outcome
of science and academic research (Arthur, 2009; Jee and Sohn, 2023a). As seen below,
this approach is subject to limitations as citation practices di�er across technological
fields.

Third, the WIPO method focuses on the technical underpinnings of AI, including AI
functions, techniques, ML, and various areas of applied computing, by combining a set
of keywords with computer-specific technological classification codes (WIPO, 2019a).

Fourth, the method by the USPTO relies on the broadest understanding of AI. This
technique uses a trained ML classifier on patent text and citations to identify innovations
related to knowledge processing, speech, hardware, evolutionary computation, NLP, ML,
computer vision, planning and control (Giczy et al., 2021). This broad conceptualisa-
tion of AI is also reflected in the volume of AI patents identified through this method,
including a large share of downstream AI applications.

In the literature, the term technological trajectory has been sometimes used to specifi-
cally refer to trajectories of patent citations, and otherwise in a broader, more conceptual
sense. In this article, we use the term trajectory to refer to one of the four sets of patents
identified through the di�erent classification methods. For further background on these
technological trajectories and detail on their implementation, we refer the reader to
supplementary information Sections A and B.

4. Results
In the following analysis, we compare the four trajectories according to:

1. General trends in the ownership and industrial a�liation of AI inventions;

2. The extent to which they demonstrate the three GPT characteristics of growth,
generality and complementarity over time; and

3. The market concentration of key actors generating AI.

4.1. General Characteristics of AI trajectories
In this section, we explore the actors driving AI inventions in each trajectory. Across
all trajectories, we observe that AI inventions became increasingly diversified across
industries and countries over the past three decades. Table 1 gives an overview of
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the trajectories, showing their patent counts, growth rates, inventor types, industry
a�liations, countries of origin, public support, and main technology classes.

The trajectories agree that AI inventions are disproportionately borne from commer-
cial enterprises and concentrated in the fields of computer manufacturing and machin-
ery. Despite classifying numbers of patents that di�er on the order of magnitude, all
approaches show the expected dominance of the US in AI patents, although our use of
US patents over-represents US inventors.

At the points of di�erence, the growth rates for the Science and the USPTO ap-
proaches suggest that the rate of AI inventions has, at least for now, passed its peak. As
may be expected, the Science approach captures the most non-commercial AI inventions
from individuals, non-profit organisations and universities, with a notably higher con-
centration of patenting ascribed to the pharmaceutical industry, compared to machinery
and manufacturing for both WIPO and Keyword. The high share of pharmaceutical
patents in the Science trajectory partly arises from the fact that patents in biotechnol-
ogy are more frequently filed by academic inventors who generally include more scientific
citations. Geographically, the Keyword and WIPO trajectories include more AI patents
of foreign inventors, especially from Japan.
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Table 1: AI trajectories by four classification approaches
Keyword Science WIPO USPTO

A. Volume

Number of patents 67,187 178,004 158,652 595,047
B. Growth

Growth rate (1990-99) 3.57 6.69 2.38 3.87
Growth rate (2000-09) 0.87 1.32 1.21 1.16
Growth rate (2010-19) 4.31 0.91 3.02 1.07

C. Inventor type (patent assignee)

% Commercial 0.89 0.85 0.90 0.91
% Individual 0.05 0.31 0.05 0.05
% Non-profit 0.07 0.13 0.06 0.05
% University 0.05 0.10 0.04 0.03

D. Industry a�liation (patent assignee)

% Pharmaceuticals (manufacturing) 0.01 0.17 0.01 0.01
% Computer (manufacturing) 0.74 0.76 0.79 0.84
% Machinery & equipment (manufacturing) 0.43 0.28 0.54 0.22
% Other manufacturing 0.13 0.10 0.09 0.09
% Computer programming (service) 0.08 0.07 0.09 0.12

E. Country of origin (patent applicant)

% USA 0.64 0.75 0.65 0.72
% Japan 0.13 0.08 0.15 0.10
% S. Korea 0.04 0.02 0.03 0.02
% Germany 0.04 0.03 0.03 0.03
% China 0.02 0.01 0.02 0.01
% Canada 0.02 0.02 0.02 0.02

F. Public support

% Public support (1990-99) 0.25 0.39 0.29 0.21
% Public support (2000-09) 0.31 0.48 0.31 0.23
% Public support (2010-15) 0.30 0.52 0.28 0.22

G. CPC 1-digit codes

% Human necessities (A) 0.13 0.18 0.08 0.08
% Performing operations (B) 0.21 0.05 0.11 0.04
% Chemistry; Metallurgy (C) 0.02 0.16 0.01 0.01
% Physics (G) 0.70 0.75 0.95 0.79
% Electricity (H) 0.32 0.26 0.27 0.33
% General/Cross-sectional (Y) 0.05 0.04 0.03 0.04

Notes: This table compares scale and scope of AI invention identified by each trajectory,
with respect to inventor type (commercial, individual, non-profit, university), industry
a�liation (based on NACE Rev. 2 classification), country of origin and technological
classification. The Keyword approach identifies the smallest sample, whereas the USPTO
sample is almost nine times bigger. Keywords and WIPO estimates a larger growth rate
over the last decade (4.31% and 3.02%, respectively). The science approach identifies
larger shares of non-commercial patents, pharmaceutical patents, and patents receiving
public support. Since we use the USPTO data, the largest country share comes from the
US. The distribution across technology classes as shown by CPC 1-digit codes look largely
similar. The notable di�erence is that WIPO identifies a larger share of patents coming
from technology class G (Physics).

Each trajectory paints a di�erent picture with respect to trends in government support
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for AI innovations. By the USPTO trajectory, only one-fifth of AI patents received public
support, however for the Science trajectory, this jumps to half in the last decade.

Comparing how the inventions are classified by CPC 1-digit codes, WIPO patents
are most notably clustered in the ‘Physics’ category, while ‘Chemistry’ patents are most
clearly identified by the Science approach. Patents identified by the Keyword and Science
approaches produce the most diverse range of AI patents.

Figure 1 shows the pace of AI invention in each trajectory. Represented as a share of
all granted US patents, the USPTO approach identifies roughly 16.6% of all patents as
AI in 2019 (see Figure E.10 in Appendix E.3.1). For all approaches, we find that this
share increased over time from 1-2% in the 1990s to 3-17% in 2019.

Figure 1: AI Patents by Year (1990-2019)
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Notes: The right panel shows the number of AI patents over time as identified by the four approaches.
The left panel shows the evolution of the Jaccard similarities computed for each year in our dataset.

To quantify the overlap and di�erences between the approaches, we compute Jac-
card similarities and illustrate their evolution over time.2 In Figure 1b, we plot the
evolution of the Jaccard similarity for pairwise comparisons of the AI trajectories. All
of them show a relatively low pairwise overlap, ranging at or below 20%. The WIPO
approach shows the highest agreement with the others. The WIPO-Keyword pair and
the Science-USPTO pair experienced the strongest increase in similarity over time. The
Keyword approach demonstrates the lowest Jaccard similarity to the other classification
approaches.

Altogether, we find that only 10,859 or 1.36% of all unique granted patents are uni-
formly identified as AI patents by all four approaches, highlighting how the choice of
classification greatly impacts the perceived scale and reach of AI.

2The Jaccard similarity for two sets of patents is given by

J(A, B) = |patents in both A and B|
|patents in union of A and B| = |A fl B|

|A fi B|

with J(A, B) œ [0, 1] where J(A, B) = 0 if both sets do not overlap and J(A, B) = 1 if both sets are
identical. In other terms, the overlap between the sets can range from 0% to 100%.
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4.2. GPT Characteristics of AI
In this section, we compare the growth, generality, and complementarity of the trajec-
tories. Table 2 summarises the key characteristics.

Table 2: Measure of GPT Characteristics of AI
Keyword Science WIPO USPTO

A. Growth
Avg. growth rate 0.16 0.15 0.14 0.13

B. Generality
Avg. generality index (1 digit) 0.76 0.73 0.72 0.68
Avg. generality index (3 digit) 0.91 0.87 0.87 0.84
Avg. generality index (4 digit) 0.96 0.95 0.94 0.93

C. Complimentarity
Avg. number of CPC (1 digit) 1.39 1.40 1.36 1.27
Avg. number of CPC (3 digit) 1.61 1.64 1.64 1.43
Avg. number of CPC (4 digit) 1.88 1.97 2.05 1.64

Notes: This table gives a comparison of the GPT-like characteristics of AI inventions
classified by each distinct technique. Note that the generality index is defined as
share of citations to patents in di�erent CPC classes at di�erent aggregation levels.
Citations within the same class are excluded. levels

4.2.1. Growth

We study growth as the rate of change of patents between consecutive years. Figure
2 shows the growth rates, with 1 corresponding to 100%. We include lowess (local
regression) smoother fits (Cleveland, 1979) in each plot to show the overall pattern.

We observe the following: first, each trajectory produces positive growth rates in most
years, as anticipated for GPTs. Second, each trajectory demonstrates a dip in growth
during the early 2000s before taking o� again in recent years. However, a comparison
with benchmark groups shows that patenting decreased across many sectors during this
period (see Figure E.4 in Appendix E.1.1). Third, two of the smaller groups produced
by the Keyword and WIPO approaches show an accelerating growth rate in the last
few years, in contrast to the USPTO and Science pool. Taken together, we see positive
growth rates and di�erences in time trends between the approaches.

In the Supplementary Information (Figures E.4), we study benchmarks that have been
discussed in the literature as GPTs. Figure E.4 shows that the AI approaches exhibit
high, or higher, growth rates than most other technologies that have been put forward as
GPTs. Additionally, we make a series of significance test using a Wilcoxon signed-rank
test for the significance of the observed di�erences in average growth rates (Appendix
E.2.1). We find that the growth patterns of the AI samples cannot be statistically
distinguished from our GPT benchmark candidates, although we observe the patterns
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of growth to be significantly higher than those of average patents.3 Generally, we find
that the di�erences between the average growth rates are not significant across di�erent
AI samples, except for the USPTO approach which shows the lowest growth.

Figure 2: Growth of Patents by Year
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Notes: The four AI approaches have di�erent growth patterns over time. The averages for all are
positive, but the Keyword and WIPO approach both have increasing growth rates.

To investigate whether the di�erent AI trajectories are associated with spillovers to
follow-up inventions in non-AI sectors, we investigate patterns of growth in patent cita-
tions. Figure 3 shows that the patents citing AI (excluding those that are themselves AI
by the respective approach) have similar profiles over time. The size ranking also cor-
responds with the counts and shares in previous plots, with growth rates that have, on
average, been positive. This confirms that each approach generates a growing number of
invention spillovers to non-AI sectors, which is characteristic for a GPT. The significance
tests in E.9 indicate that the di�erences between the triple Keyword-Science-WIPO can-
not be statistically distinguished, except for Keyword showing the slowest uptake in the
1990s, but to take o� thereafter. These three approaches, however consistently score
significantly higher than the USPTO group. Figure 3b suggests similarity between the

3Note that these tests rely on a very small number of observations and growth patterns of the four AI
samples that fluctuate and di�er across the three decades.
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four time profiles and growth series, thus implying that the trajectories capture di�erent
portions of a larger group of similar technologies.

Figure 3: Patents Citing AI
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Notes: Panel (a) shows actual number of AI citing patents. Panel (b) shows growth rates plotted
from 1995 and onwards.

4.2.2. Generality

We use two indicators to evaluate the generality of AI inventions, i.e. the extent to which
these inventions are used in diverse technology fields. First, we assess the generality
index, which is defined in the Appendix A.2. Additional results for other aggregation
levels are provided in Appendix E.3.2. The Keyword trajectory shows the highest level
of generality across all levels of aggregation. Hence, citations from other technology
fields to Keyword AI patents are most equally distributed across di�erent technology
fields. The WIPO and Science produce similar generality indices, with a slightly higher
value for Science. The USPTO group produces the lowest generality index across all
CPC levels.

Next, we present the second GPT measure of wide usefulness, based on the mean
annual average number of unique citing classes citing to an AI patent. This accounts
for the di�erent number of annual patents and avoids an over-representation of the
generality of patents in more recent years, as the number of patents is steeply increasing
over time. Again, we compile the metric for di�erent levels of aggregation. At all levels
of aggregation, the Keyword patents are the most general (see Table 2). At the 1-digit
level, Science scores second, closely followed by WIPO. WIPO scores higher at the 3-
and 4-digit level. The USPTO patents demonstrate the lowest number of unique 1-, 3-,
and 4-digit patent citations.

In Figure 4a and 4b we show the evolution of the generality index over time, with
4b showing the z-scaled version. The figures confirm that the Keyword patents are
consistently the most general during the whole period, with the Science and WIPO
approach producing similar, but lower, results. Again, the USPTO patents show the
lowest generality. Towards the end of the time period, the decline in generality of the
Keyword and USPTO methods needs to be considered with caution, as the absolute
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number of citations of recently granted patents is lower when the time window to be
cited is small.

Figure 4: Generality Index at the 1-digit CPC-section level
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(a) Generality index
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(b) Z-score scaled generality

Notes: The z-scored value equals the level of the generality index minus its average across the four
approaches divided by the standard deviation for each year.

We also calculate the generality index for all patents and our set of benchmark GPTs.
Table E.2 shows that the generality index across all patents is higher than AI categories,
which is a natural feature confirming the usefulness of the generality index to capture
the widespread use of patents. Among other groups, biochemistry/genetic engineering,
nanotechnology, and climate inventions related patents have high generality score. Fig-
ure E.5b shows that the time-series pattern of the generality score is quite stable, for
some end-of-the-period fluctuations. For our second measure of generality, we find that
AI patents show more generality than the entire patent universe at any level of CPC
codes (Table E.3). Biochemistry/genetic engineering and climate-related patents show
high patent-level generality. These numbers show that our generality measures work
well, at least for some known GPT candidates.

In Appendix E.2.2 we show the results of a series of significance tests for the di�erences
between the time series. These tests confirm that the highest score of the Keyword
and the lowest of the USPTO method are statistically significant, while the di�erences
between generality scores of the science and WIPO approaches are negligible at the 1-
digit level. In Appendix E.3.2, we also report the number of unique citing technology
classes for the set of AI patents that are cited at least once (see Table E.39). Interpreting
backward citations as a proxy for the technological value of a patent (Kogan et al., 2017),
this alternative measure focuses only on high-value patents. Again, the Keyword patents
show the highest generality across all levels of aggregation. Science scores slightly higher
than WIPO at the 1-digit level and vice versa at the 3- and 4-digit level. The USPTO
approach shows the least generality.

We provide additional results on the generality of the ‘descendants’ of AI patents, i.e.
those patents that cite AI patents, but are not themselves AI (Appendix E.4). These
patents produce similar results, although the di�erences between the four AI trajectories
are smaller.
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Figure 5: Average Number of Classes Citing AI
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Notes: The z-scored value equals the level of the generality index minus its average across the four
approaches divided by the standard deviation for each year.

Figure 5 and the significance tests shown in Appendix E.2.2 confirm that the Keyword
sample of AI patents shows a significantly larger number of di�erent citing CPC classes
compared to the other three methods. Notably, time series of citation data are sensitive
to truncation towards the end of the period, as more recently granted patents have a
shorter period of being cited. Looking at the z-score scaled data (Fig. 5b), we find that
the science approach is the least sensitive to this truncation. Appendix E.4 provides
additional results for the patents cited at least once.

Table 3: Average Citation Lags by Approach
Period Keyword Science WIPO USPTO
all periods 9.83 8.90 9.63 9.80
1990-1999 13.72 13.26 13.77 13.64
2000-2009 9.84 9.08 9.38 9.34
2010-2019 4.26 4.15 4.19 4.33

Notes: This table shows the average number of years taken
until a patent in the sample is cited. The average number of
years is lower during the more recent decade as the maximal
time lag is truncated when our data ends in 2019.

An analysis of the average citation lags are shown in Table 3. The lags are given by
the average number of years between the grant year of a patent and the grant year of
the patents citing the patent. Hall and Trajtenberg (2006) argue that long citation lags
are characteristic for GPTs, when their early ‘learning and destruction’ phase relies on
the accretion of complementary inventions and structural and organisational changes
throughout the economy (Crafts, 2021). Keyword patents show the longest citation lag,
i.e. patented inventions captured by this approach take more time to be taken up in
subsequent patents.
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Altogether, the AI trajectory identified by the Keyword approach produces a set of
AI patents with the highest level of generality across di�erent metrics.

4.2.3. Complementarity

To understand how strongly AI inventions complement existing or novel products and
processes, we examine the co-occurrence of the technology classes ascribed to AI patents.
If AI can be combined with many other technologies, AI patents would be co-classified
across diverse technological classes.

Figure 6 shows the percentage of 3- and 4-digit CPC classes associated with each pool
of AI patents. In panel (a), USPTO patents span the most diverse pool of technology
classes, with CPC classes ranging from 70-90% of all possible 3-digit codes. This result,
however, could be caused by the large number of AI patents identified by the USPTO
approach. The other three approaches identify a substantially smaller pool of AI patents
(see Table 1), yet these patents cover a large share (80-90%) of 3-digit codes by 2019.
Panel (b) in the same figure shows the share of 4-digit CPC classes. Starting around
2010, the share of technology classes embedded in Keyword, Science, and WIPO patents
rapidly increased. Although USPTO patents represent the most diverse portfolio —
at 78% of all technology classes in 2019 — the gap to the other three approaches has
narrowed in recent years. Our significance tests show that the di�erences between the
triple Keyword-Science-WIPO are statistically insignificant, but all score significantly
lower than USPTO patents (see Table E.29 and E.31).

Figure 6: Diversity of Patent Pool – Share of Technology Classes
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Note: Panel (a) shows the percentage of 3-digit CPC codes and panel (b) shows the percentage of
4-digit CPC as a share of all codes in the respective category. Note that the total number of 3-digit
and 4-digit CPC codes are 136 and 674, respectively according to the February 2022 version.

To understand whether AI patents became more multidisciplinary, we calculate the
annual averages of the number of 1-, 3- and 4-digit CPC codes per patent. As Table
E.42 in Appendix E.3.2 shows, an average WIPO patent is associated with 1.64 3-digit
classes and 2.05 4-digit classes across all years. An average Keyword or Science patent
is associated with slightly fewer classes, whereas the USPTO patents appear to be the
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least multidisciplinary by this metric. The highest score of the WIPO method at the
4-digit level and the weak diversity performance of the USPTO approach are statistically
significant.

At the 1-digit level, an average Keyword and Science patent show both similarly high
numbers of co-classifications (1.39-1.40) and cannot be statistically distinguished. The
other approaches rank significantly lower, with the USPTO approach showing the lowest,
despite its scale. In Figure 7, we check how the average number of technology classes per
patent varies over time for di�erent aggregation levels. All panels demonstrate a rising
number of technology classes per patent towards the second half of the last decade, with
the most profound increase for WIPO patents. The significance tests suggest that the
Keyword and Science methods cannot be statistically distinguished at the 1- and 3-digit
level (see Appendix E.3.3). At other aggregation levels, the di�erences diminish, except
for the low scoring of the USPTO method and the highest score of the WIPO method
at the 4-digit level.

Figure 7: Patent-Level Diversity - Average Technology Classes

1

1.5

2

2.5

3

3.5

Av
er

ag
e 

nu
m

be
r o

f 3
-d

ig
its

 C
PC

 c
od

es

1990 1995 2000 2005 2010 2015 2020
Year

Keyword
Science
WIPO
USPTO

(a) Average number of 3-digit CPC

1

1.5

2

2.5

3

3.5

Av
er

ag
e 

nu
m

be
r o

f 4
-d

ig
its

 C
PC

 c
od

es

1990 1995 2000 2005 2010 2015 2020
Year

Keyword
Science
WIPO
USPTO

(b) Average number of 4-digit CPC

In summation, although the USPTO patents dominate by scale, the other three ap-
proaches produce the dynamics of increasingly diverse patent pools over time. It is
remarkable that the Keyword approach with only 67,186 AI patents cover almost 90%
of all possible 3-digit CPC codes and 67% of all possible 4-digit CPC codes.

Examining the diversity of average patents, we find widespread recent increases in the
diversity of technology classes per AI patent. In recent years, the WIPO approach seems
to capture the most multidisciplinary patents, which could be due to the more explicit
incorporation of computer hardware compared to other approaches (see Section B.4).

In Appendix E.1.1, we also use these measures for a set of benchmark GPT candidates
to see how well they capture technological diversity. We find that our measures are
performing equally well in capturing the increasing diversity of other GPTs suggested in
the literature.
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4.3. Market Power of AI-producing Firms
As we saw above, there could be a need to look beyond AI as a GPT, as new and
pervasive technologies can have profound impacts on the distribution of market power.
We now turn to the key inventors and examine concentration of inventive activities
across the four technological trajectories.

Table 4: Top AI-Producing Firms
Keyword Science WIPO USPTO

Company name share Company name share Company name share Company name share
IBM Corp 0.04 IBM Corp 0.07 IBM Corp 0.07 IBM Corp 0.07
Microsoft 0.03 Microsoft 0.06 Microsoft 0.04 Microsoft 0.04
Samsung 0.02 Google 0.03 Google 0.03 Google 0.03
Google 0.02 Apple 0.02 Canon 0.02 Intel 0.01
Amazon 0.01 Sony 0.01 Samsung 0.02 Samsung 0.02
Siemens 0.01 Siemens 0.01 Sony 0.02 Sony 0.02
Intel 0.01 Hewlett Packard 0.01 Intel 0.01 Amazon 0.01
Canon 0.01 Intel 0.01 Amazon 0.01 Canon 0.02
Sony 0.01 AT&T 0.01 Siemens 0.01 Siemens 0.01
AT&T 0.01 Canon 0.01 Fujitsu 0.01 Fujitsu 0.01

Notes: This table reports the top-ten AI producing firms within each trajectory. IBM, Microsoft, and
Google are among the top-five AI patenting firms across all four groups. The column share reports the
share of commercial patents accounted by a firm within the each trajectory. For example, IBM accounts
for 4-7% of all AI patents produced by commercial firms.

Table 4 presents the top AI-patenting firms across all four trajectories. All approaches
identify that AI patenting is dominated by technology and communication companies,
with WIPO and USPTO even identifying perturbed lists of actors.

At first look, the top-ten AI producing firms suggests that the trajectories largely
agree on the market concentration of the largest firms. However, because the table does
not represent the full distribution, we calculate the Herfindahl–Hirschman Index (HHI)
which in our context denotes the sum of squares of the share of AI patents produced by
each firm.

Table 5 summarises the concentration of the top 10 patenting firms identified by each
classification approach. Clearly, firms identified via the Keyword approach are the least
concentrated and with the lowest HHI: a result consistent with findings in Section 4.2
that this approach best captures other characteristics of AI as a GPT.

Contrary to some of the concerns raised, we do not observe that AI inventions became
clearly more concentrated in firms during the past three decades. We observe minor
fluctuations, but cannot observe any clear trend for any of the four trajectories. These
findings need to be combined with the insight that our data only reflects trends in the
distribution of patented AI inventions across firms: Market concentration in AI can also
refer to market shares and control over data, computational resources, and platforms.
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Table 5: Concentration of Firms innovating in AI
Keyword Science WIPO USPTO

Concentration Ratio (CR)
Four-firm CR 0.11 0.17 0.16 0.18
Eight-firm CR 0.16 0.22 0.22 0.23

Herfindahl–Hirschman Index (HHI)
HHI (overall) .006 .012 .011 .014
HHI (1990-1999) .006 .012 .012 .014
HHI (2000-2009) .005 .013 .015 .016
HHI (2010-2019) .007 .013 .011 .014

Notes: This table shows the measures of concentration of AI-
producing commercial firms. HHI is calculated as the sum of squares
of shares of patent produced by each firm within each of the four tra-
jectories. Concentration ratios measure the market share of top-four
(or top-eight) firms.

5. Discussion
Our preceding analysis highlights how sensitive the estimation AI’s scale and scope is
to its classification approach. All four trajectories document the rise of AI inventions
over the past three decades, as captured by patent counts and share of AI patents. All
also document a slow-down in AI patenting from 1990 to the early 2000s (a so-called ‘AI
Winter’) followed by a period of increased patenting since the 2010s (Stuart and Norvig,
2003; Klinger et al., 2022). To validate our measures, we evaluated the same three
GPT characteristics for other technologies that were proposed as GPT candidates in the
post-1990s and find similar trends to those seen in AI patents. All of them outperform
average US patents, indicating their potential GPT nature. These supports the often
made claim of AI having the technical characteristics of a GPT (Trajtenberg, 2018).

All four trajectories exhibit key GPT characteristics, but to di�erent extents. Despite
capturing the smallest number of patents, the Keyword sample shows the highest aver-
age growth rate in the post 2010s and most strikingly demonstrates AI’s wide-ranging
usefulness across several technology fields. AI patents identified by the USPTO approach
most strongly show the feature of complementarity from 1990-2010, while the other three
samples show more heterogeneous trends. This is not too surprising, as the USPTO ap-
plies a very broad understanding of what inventions could be considered as AI-related,
leading to a wide spread of AI patents across technological classes. When accounting
for the di�erences in patent counts, complementarity is most clearly demonstrated in
the WIPO patents, closely followed by Science and Keywords. The di�erence in results
when using an aggregate versus patent-level measure of complementarity suggest that
narrow definitions may perform better to capture the core properties of an invention,
while the wide AI conception, as encoded in the USPTO method, might be better suited
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to capture AI di�usion.
Another noteworthy result is that we do not find any empirical support for an increas-

ing concentration in AI as often argued in the literature (Petit, 2017). This is reflected
in stagnating concentration measures. Further, when using the Keyword method, which
has a focus on very recent trends and captures best the GPT of AI, we find much lower
levels of concentration than for any of the other trajectories. Of course, our results are
limited to concentration in inventive activity, and we cannot draw definite conclusions
about the concentration of power in the market and control over essential resources such
as data, computing facilities, social networks, and platforms. While we confirm that the
powerful position of few Big Tech companies is also reflected in our data, we cannot
confirm that concentration became stronger over time or can be attributed to the GPT
characteristics of AI that raise great expectations about its technological potential.

The results suggest that barriers to entry in AI invention did not recently become
more di�cult to climb. This may also be due to the nature of digital inventions, which
are associated with a relatively low capital intensity. An alternative hypothesis is that
the modularisation of the AI ecosystem facilitates the entry of novel players, as it allows
computational resources and basic hardware to be externally sourced at a�ordable prices.
Those interested in regulation and competition policy, as well as economists studying
the impact of AI, should therefore be specific about which segments of the AI ecosystem
are considered, and note the limitations of their approach (cf. Jacobides et al., 2021).

Our comparison of four AI trajectories have implications for policy and research, as
they underscore how the definition used to identify a novel technology can impact the
outcome of research in economics and innovation studies. For example, when investigat-
ing the role of public R&D funding on AI innovation outcomes, the Science trajectory
would suggest a much higher importance of funding than the other approaches. While
the USPTO and Science trajectory report a slow-down in AI inventions, this result would
not be supported when applying the short-range view of the Keywords method or the
technical perspective by the WIPO. This may lead to di�erent conclusions and candidate
explanations, for example, whether the decline or rise can be attributed to a narrowing
and corporatisation of AI research (Klinger et al., 2022; Jee and Sohn, 2023b).

As an example, in 2021 the UK government launched a package of economic, policy,
and regulatory reforms, dubbed the National Artificial Intelligence Strategy, to make
the UK a ‘global AI superpower’ and plan for the long-term needs of AI technologies
(Artificial Intelligence, 2021). Given that the Science and USPTO trajectories suggest
that AI inventions are plateauing, while others (Keywords and WIPO) show that it is
increasingly taking o�, we recommend considering multiple techniques to counteract the
dependence of policy conclusions on the choice of the method.

Our study indicates that the simple Keyword approach generates key GPT-features
most strikingly. The other approaches are conceptually and computationally more com-
plex: the USPTO approach relies on sophisticated machine learning (ML) methods, the
Science approach leverages additional data sources, and the WIPO method relies on the
symbolic combination of technology codes and keywords. The narrowing of AI research
into deep learning, as highlighted above, may partially explain why a method based on
human-selected and therefore topical keywords related to deep learning produces the
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characteristics so strikingly.

5.1. General Purpose Technology indicators for Technological
Trajectories

As summarised in Table 6, the Keyword approach produces the patent pool with the
highest growth rates, generality and second-highest level of complementarity. The WIPO
and Science pools produce similar levels of each characteristics, but WIPO being stronger
when it comes to complementarity. The USPTO patents least profoundly demonstrate
each of the three GPT characteristics.

Table 6: Summary of Findings
Keyword USPTO WIPO Science Metric Based on

Growth Growth rate Counts
Generality Generality index Citations
Complementarity Avg. # tech. classes CPC codes

This brief summary of our results shows which patent group generates the strongest average
estimate of each General Purpose Technology characteristic over the last 10 years. Red (yellow)
colour indicates the strongest (weakest) performance.

Remarkably, the Keyword approach generates the most profound evidence of each
of the three GPT characteristics using a much smaller (67k) set of patents than the
other approaches (159-595k). The WIPO and science-based patent groups both demon-
strate increasing generality, complementarities, and growth of AI invention over time,
yet these methods rely on more complex classification and face limitations regarding
patent coverage.

Despite relying on the most computationally-intensive ML approach and covering the
largest group of patents, the USPTO patents are the least diverse, have the lowest growth
rates, and exhibit the fewest complementarities.

Notably, each approach reproduces key time-trends in AI inventions, including a sub-
stantial uptick in the number of patents citing an increasingly diverse spread of AI
patents after 2010. All methods show a high generality of average AI patents and de-
creasing number of distinct citing technological classes since 2000.

5.2. Concentration of AI inventions and political implications
Our comparison of top AI-producing firms across all trajectories clearly demonstrates
that top technology firms dominate AI inventions. Whichever approach is used, it is
clear that IBM, Microsoft, and Google among the top-five AI patenting firms. IBM
accounts for 7% of the patents in Science, WIPO, and USPTO trajectories, yet only 4% in
Keyword patents, which attributes a higher share to Samsung. Keyword patents are the
least concentrated, with the top-four firm accounting for 11% of patents, compared to 16-
18% in other approaches. The Keyword trajectory also appears to be least concentrated
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in terms of HHI. These results, along with our measure of higher generality index for
Keywords, suggest that the Keyword trajectory represents variety of patents represented
by more variation among the inventing agents. On the other hand, the other approaches
were shown to capture highly concentrated AI invention activities, thereby identifying
less of the general purpose AI and more special purpose patents.

It should also be noted that while the levels of industrial concentration are consis-
tent, this did not clearly increase during the past decades. Thus, arguments about
an increasing concentration of AI development can not be directly based on shares of
patented AI inventions. Clearly, these could be based on other qualitative aspects, such
as an increasing utility of AI inventions.

Taken together, our results demonstrate that introducing an agency dimension con-
sistently reproduces a high concentration among a few powerful actors in AI research
and development. This can be viewed as consistent support for arguments that have
argued the possible need to consider regulating AI and look beyond the question of GPT
(Jacobides et al., 2021).

5.3. Results in a Wider Context
Our results highlight that the extent to which AI constitutes a GPT, as well as the scale
and scope of its present and future impact, is significantly sensitive to the classification
technique used. Moreover, our results call into question the literature that takes as given
that AI is a GPT that is projected to expand in the ensuing years (Cockburn et al., 2019;
Goldfarb et al., 2019; Brynjolfsson et al., 2021).

Relying on the USPTO classification method, it can be said that average patents now
show the lowest generality index and there has been no growth in the number of 3-digit
CPC codes assigned an average AI patent since 2000. Moreover, by this method, the
growth of AI patenting has plateaued after 2010 —a result that may generate questions
over new, large-scale initiatives designed to bolster AI research.

Recent breakthroughs in the technology, data, and resources underpinning AI and its
applications have spurred an international race between countries to become the global
AI leader through hefty investments and significant policy decisions. In this context,
the UK has recently launched the National Artificial Intelligence Strategy, to bolster the
‘long-term needs of AI technologies’ to ready the economy for the ‘Age of AI’ (Artificial
Intelligence, 2021). Yet by the USPTO’s own classification methods, it can be said that
AI inventions as reflected in patents began to slow back in 2010.

From a research e�ciency perspective, our results raise the question whether human
reasoning used to define relevant keywords outperforms more computationally complex
classification methods. The small, simple and tractable Keyword approach may be
desirable for researchers aiming to catch emerging GPTs. Small patent groups may
indicate a clearer distinction from other patents and, because such technologies are
‘new’, there is greater potential for future growth, compared to the USPTO approach
which suggests that 16.6% of all US patents today are based on AI. This being said,
other classification approaches may be better suited to other questions surrounding
the knowledge base of inventions (Science) or the trajectory of inventions through the
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universe of technologies (USPTO).
During our analysis, we also discovered that the Keyword method reproduced from

Cockburn et al. (2018) may be further simplified. We found that the majority of patents
can be identified using a narrower set of four terms (machine learning, neural network,
robot, pattern recognition), rather than the original list of over forty words.

Finally, the phenomena of ‘AI narrowing’, as discussed in Klinger et al. (2022), sug-
gests that AI innovation has become significantly less diverse during the time period of
our analysis. The authors suggest that the concentration of AI research within a small
group of private firms is leading to the premature narrowing of its GPT potential. We
argue that the intensive focus on deep learning techniques since 2010, combined with
path dependency, has reduced incentives for such leaders to explore alternative methods.
We argue that this ‘locking in’ of AI to a subset of deep learning techniques is driving
under-investment in other applications, including ethical and environmentally conscious
AI. Our investigation of arXiv AI research reveals a sharp turn towards computer vision
and language AI dominated by deep neural networks as well as a stagnation of various
metrics of AI research diversity.

The Keyword and WIPO approaches both include terms closely related to machine
and deep learning, and may be the most sensitive to this premature narrowing. However,
this is not visible in our results, which instead show stabilised generality and increasingly
diverse co-classifications since 2010. Another possible explanation is that a certain hype
around keywords unfolds with a time lag, and that incentives support using these key-
words. On the other hand, this is made more di�cult by the fact that approaches using
keywords match key sections in patents that are carefully reviewed for inventiveness. A
recent focus on certain techniques may simply represent a technological trend, whereby
existing keywords may soon be supplanted by new inventions.

5.4. Limitations of Our Approach
Our evaluation is subject to two major caveats. First, the performance of the di�erent
approaches to capture the GPT-like characteristics of AI may be dependent on the
time period chosen. Given that our aim is to inform researchers who are interested
in the impact of AI, we have chosen to investigate the period from 1990-2019, when
AI began to grow and disseminate more widely (Cockburn et al., 2019). Because that
the performance of the keyword approach may reflect the popularity of a narrow set of
technological buzzwords, our results may di�er in other time periods.

Second, we emphasise that the evaluation of di�erent classification methods depends
on the intended purpose. Here, we aim to provide guidance for researchers interested
in studying the economic impact of AI inventions that they take to be a GPT. Other
methods may be more appropriate to study the dissemination of AI-related applications
or the knowledge origins of AI. For example, the USPTO approach tells an interesting
story, suggesting that 14% of all patented inventions in the US today already rely on
AI; the Science approach in these contexts would provide interesting extrapolation to
the early origins of AI research in the 1950s.

Ultimately, our results suggest that the extent to which AI can be seen as a GPT,
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as well as its future scale and scope, is sensitive to the chosen classification method.
This underscores the importance of balancing multiple classification techniques when
considering how political and economic measures could a�ect AI’s projected future im-
pact. Furthermore, we suggest that those wishing to show that AI is indeed a strong
GPT projected to accelerate into the future could do so by employing a keyword-based
classification approach.

6. Concluding Remarks
In this paper, we have performed a systematic analysis of four separate approaches
to identifying patented AI inventions. The evidence suggests that these are distinct
and only partially overlapping groups of patents that can represent di�erent potential
technological trajectories associated with AI. Ultimately, we demonstrate how sensitive
each key GPT-like feature of AI is to the classification method chosen, and investigate
levels of market concentration.

First, our results provide overall guidance to policy-makers and innovation scholars on
how to identify patented AI inventions. For researchers interested in studying the GPT-
like characteristics of AI, a simple keyword-based approach may be more successful at
producing a narrowly defined set of patented technologies that demonstrates the canon-
ical GPT features of intrinsic growth, wide usefulness, and complementarity. Di�erent
trajectories are associated with di�erent levels of GPT-like characteristics.

We find consistent support for the need go beyond thinking of AI as a GPT and
study (Jacobides et al., 2021), e.g., by considering the agency dimension related to AI.
Among the strongest results that are most consistent across the di�erent technological
trajectories, we have found similar levels of market concentration. That a few firms
strongly lead AI inventions is something which appears valid across methods to find AI
inventions in data, which could be relevant for competition policy and market regulation
(Petit, 2017; Hennemann, 2020).

Our work therefore provides both robust findings as well as important caveats to
those making policy and funding decisions for the future pace of AI inventions, such as
the recently released UK National Artificial Intelligence Strategy (Artificial Intelligence,
2021). Taking an approach of AI as a General Purpose Technology is reasonable to do for
di�erent technological trajectories, but there is clearly a need to observe that an agency
dimension suggests strong concentration of market power. This illustrates the usefulness
to further track AI inventions using patent data. To acknowledge other respects where
the findings di�er, we also underscore the need for multiple AI classification techniques
in order to counteract the dependence of significant policy conclusions on the choice of
classification approach.
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A. Measuring GPTs
Currently, there exists a number of alternative metrics to capture GPT characteristics.
Given the lack of consensus, many believe GPTs should be better identified as sophisti-
cated networks of technologies sharing ‘underlying principles and mutual dependencies’
(Petralia, 2020).

Historically, patent growth rates have been used to capture the endogenous elaboration
of technologies similar to GPTs (Moser and Nicholas, 2004; Jovanovic and Rousseau,
2005; Petralia, 2020). Petralia (2020) uses patent growth rates, co-classifications, and
a text-mining algorithm to successfully reproduce the canonical GPTs contained within
the broad USPTO categories of electricity and computer communication. However,
the author finds great heterogeneity within these pools of patents, which contain both
dynamic and stagnant inventions. Moreover, the author notes that the identification
of more di�use and diverse GPTs, such as AI, may require ‘bottom-up’ classification
approaches using lower levels of aggregation that can scan multiple technological classes
for common principles.

Hall and Trajtenberg (2006) attempt to capture GPTs by measuring the patent growth
rates and unbiased generality measures for the most-cited US patents and the patents
which cite them. The authors also find great heterogeneity between patents, which
underscores the need for multiple metrics to satisfactorily capture GPTs.

In the next section, we motivate our selection of patent measures for GPT charac-
teristics and connect each with empirical facts about AI’s dissemination and the three
canonical GPT features.

A.1. Growth
For more than a decade, AI methods have become more powerful and complex as a
result of new technical methods, increased data availability, and improved hardware.
Consequently, AI invention has shifted away from specific application-based methods
to more generalised learning-orientated systems (Cockburn et al., 2019). With this
refinement, the performance of many sub-fields of AI, such as image and text recognition,
have seen remarkable improvements in performance (Brynjolfsson et al., 2021). This
is reflected in the exponential growth of patenting activity referencing terms such as
machine learning and deep learning (see Supplementary Information, Figure D.2).

Based on these observations, we measure improvements in AI via the growth rates
of each group of patents and changes to their share of all patents, from 1990 to 2020
(Hall and Trajtenberg, 2006; Petralia, 2020). We also look at the growth of the patents
that cite such technologies: the ‘GPT hypothesis’ in previous work has been that inven-
tions that build on GPT-like technologies should spawn more new inventions (Hall and
Trajtenberg, 2006).

Let Ni,t denote the number of patents in a group i œ {keyword, science, WIPO, USPTO}
at time t, indexed by year. We compute the growth rate as
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Ni,t ≠ Ni,t≠1

Ni,t≠1
. (A.0)

A.2. Generality
AI has already begun to pervade a myriad of industries as it expands beyond computer
science into such diverse fields as structural biology, transport, and imaging (Cockburn et
al., 2019). In the early 1990s, AI methods remained largely confined to computer science.
However, over the past decade, the majority of patents referencing these technologies
have appeared in secondary domains (Cockburn et al., 2019). Based on the work of
Trajtenberg et al. (1997), we capture this stylised fact through the ‘generality’ of patents,
measuring the dissemination of AI across di�erent technology fields.

To do so, we build on patent citation data and assume that a forward citation link
entails information about the use of a patent in a subsequent invention (Ja�e and De
Rassenfosse, 2019). To operationalise wide usefulness, we rely on a modified version of
the generality metric by Trajtenberg et al. (1997) and Hall and Trajtenberg (2006) given
by

1 ≠
ÿ

j

Q

a #citesij,t
qNj

j=1 #citesij,t

R

b
2

(A.0)

where #citesij is the sum of citations to patents labelled as AI by classification approach
i from technology class j, whereby we use the CPC 1-digit level as class. The number of
citations #citesij excludes citations within the same class: Ni is the number of patents
in approach i and Nj is the number of di�erent CPC classes. Our approach di�ers to
that of Trajtenberg et al. (1997) as we apply the method to each group of AI patents
belonging to a variety of CPC sections. For the main analysis, we focus on 1-digit CPC
sections, as these are more technologically distant than 3-digit or 4-digit classes and
subclasses, whose results we also report.

Our generality measure is calculated for the entire group of patents in i with Ni unique
patents. To address concerns that this metric may be a�ected by di�erences between
group sizes, we additionally calculate patent-level metrics given by the average number
of citing classes, i.e.

1
Ni,t

Ni,tÿ

p=1

Ndÿ

j=1
1(#ncitesp,j,t Ø 0) (A.0)

where 1(#ncitesp,j,t Ø 0) = 1 if patent p in i is cited by at least one patent in technology
class j out of the total number of classes Nd at level with d µ {1, 3, 4} s in the code.
Again, we exclude within-class citations and present results at both the 1-digit CPC
section level (d = 1) and higher orders of disaggregation (d = 3 or d = 4).
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A.3. Complementarity
Thirdly, GPTs augment existing products and processes in a range of novel contexts to
generate productive complementarities throughout the economy (Bresnahan and Tra-
jtenberg, 1995; Petralia, 2020). AI technologies have been shown to complement and
rely on secondary inventions, related to areas such as cloud computing and big data,
which increase access to larger and more a�ordable data-sets (Brynjolfsson et al., 2019).
Furthermore, because diverse AI systems share similar underlying structures and can
share information, advances in one application of ML, such as machine vision, can spur
inventions in other fields, such as autonomous vehicles.

Following the approach of Petralia (2020), we measure the extent to which AI patents
enhance and supplement other inventions through the diversity of their technology class
co-occurrences. For our analysis, we calculate the share of 3- and 4-digit CPC codes
(d = 3, 4) assigned to the patents in each group of AI patents. Specifically, we calculate
the following diversity measure over time is

#CPCsi,d,t

Nd
(A.0)

where i denotes each of the four patent classification approaches, d is the classification
level and t is year. Nd refers to the number of CPC codes found in use for a particular
group of patents, where the codes include d digits. Note that there are 136 and 674 CPC
codes, respectively at the 3- and 4-digit level (according to the February 2022 version of
CPC codes).

As the above measure could be biased by patent volume, we also calculate the average
number of distinct 1-, 3-, and 4-digit CPC codes per patent per year. The diversity per
patent over time is

1
Ni,t

ÿ

p

#CPCsp,i,d,t (A.0)

where d represent the technology class represented by 1-, 3-, or 4-digit CPC codes. The
time series graphs for the latter measures depict how an average patent’s complemen-
tarity across technology sections evolves over time.

B. Measuring AI
In our analysis, we compare four methodologically and conceptually distinct approaches
to identifying AI inventions in patents based on (1) keyword search, (2) science citations,
(3) the WIPO, and the (4) USPTO method. Here, we introduce these classification
approaches in detail.
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B.1. Data Source
We apply our methods to all patents granted by the USPTO from 1990-2019. For
the analysis, we create four groups of AI patents for each classification method and
complement each with supplementary information.

From PATSTAT (Spring 2021 edition, EPO (2021)) we sourced patent grant dates and
from the USPTO we downloaded the Master classification file (April 2021 version) which
contains CPC classifications of patents.4 We added further data on patent-to-patent
citations and patent titles from GooglePats obtained in an earlier project (Hötte et al.,
2021). For our analysis, we supplemented the citation data with citation year and the
technology classes of both the citing and cited patent. In doing so, we obtained networks
which represent citations from technology fields at di�erent levels of aggregation to our
four sets of AI patents. We also made use of the Reliance on Science database (Marx
and Fuegi, 2020) for citation data between patents and science.

B.2. Keyword search
Our first classification technique is a straight-forward approach based on keyword search,
in which researchers use their discretion to develop a set of terms that reflect the most
recent developments in AI. In this paper, we use the set of keywords provided in the
appendix of Cockburn et al., 2018.5 The keywords used in this paper focus on three
sub-fields of AI: symbolic systems, learning algorithms, and robotics (see Table C.1
for the full list of keywords). According to the authors, the symbolic systems represent
‘complex concepts through logical manipulation of symbolic representations’ and include
‘natural language processing’ and ‘pattern recognition’. Learning algorithms include core
analytic techniques such as neural networks, deep learning, and machine learning. The
last category, robotics, is related to automation or applications of AI (e.g. computer
vision and sensory networks).

We search for these keywords in patent titles, abstracts, claims, and descriptions using
USPTO data. We match the resulting list with patents granted by the USPTO between
1990 and 2019. The main advantage of the keyword approach is its simplicity and ease
of implementation. Moreover, carefully chosen keywords can capture recent changes
in the AI field. However, the success of this approach depends on the judgement and
familiarity of the researcher to the field of AI. Missing important keywords could lead
to under-representation of a sub-field. Our approach yields 67,187 patents.

4https://bulkdata.uspto.gov/data/patent/classification/cpc/
5While we use the keywords from Cockburn et al., 2018, we do not fully replicate their approach. They

use two subsets of patents: (1) patents classified by the USPC code 706 (Artificial Intelligence) and
901 (Robots); and (2) patents identified by searching titles for the selected keywords. Here we use
patents identified by keyword search only, but we extend our search to match keywords also from
abstract, claims, and description. We do not use the USPC classification codes since the WIPO
method takes a more comprehensive approach combining keywords with IPC or CPC classifications.
Also, with our extensive keyword search, we miss only a few patents which are in the first group
(i.e., USPC 706 and 901) but not in the second group of Cockburn et al., 2018.
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B.3. Science Citations
This classification approach harnesses the scientific basis of patents. In particular, we
classify a patent as an AI patent if it makes at least one citation to a scientific paper in
the scientific field of ‘Computer Science; Artificial Intelligence’ (short, AI paper) as cate-
gorised by the Web of Science (WoS). Scientific citations are added to patent documents
for multiple reasons such as describing the technological content of the invention or dis-
tinguishing the legal claim from other publicly available knowledge (see Narin et al.,
1995; Meyer, 2000; Tijssen, 2001; Ahmadpoor and Jones, 2017; Marx and Fuegi, 2019).
A citation link to an AI paper indicates that the patent is technologically related to AI
because it builds on scientific advancements in this field. A limitation of this approach
is that it only identifies AI patents within the subset of patents that make citations to
science.

For this method, we use data from the Reliance on Science (RoS) database (Marx and
Fuegi, 2019; Marx and Fuegi, 2020; Marx and Fuegi, 2021) which comprises a mapping
from patents to scientific articles indexed in Microsoft Academic Graph (MAG) (Sinha
et al., 2015). Scientific articles are tagged by the WoS fields indicating the field of science
into which an article is grouped.6

The citation links in the RoS database cover citations made by both the patent ap-
plicant and examiner, as well as citations indicated at both the front page and body of
the patent document. Marx and Fuegi (2019) identified citations through a sequential
probabilistic text recognition technique. Each citation link is tagged with a confidence
score indicating the reliability of the matching approach. In the RoS data, roughly one
third (34%) of all US patents granted in 2019 can be attributed with at least one citation
to science.

In our study, we identified AI papers by their WoS categories and extracted all patents
with at least one citation link to an AI paper. We kept only citation links with a
reliability score greater than three, which corresponds to a precision rate of 99.5% and
a recall of 93%. This approach yields 178,004 AI patents.

B.4. World Intellectual Property Organisation (WIPO)
Method

The WIPO methodology for classifying AI patents was published in 2019 and validated
by a team of patent experts (WIPO, 2019a; WIPO, 2019b). The aim behind the method-
ology is to capture three aspects of AI invention: (1) core AI techniques (deep learning,
other learning methods, various type of logic, clustering, etc.); (2) functional applica-
tions of AI that can be used to simulate human-like cognitive capacities (such as vision,
language, or decision-making); and (3) end-user application fields (such as automation
in business, health, or military).

This methodology is based on both a keyword search of patent texts and the use of
patent classification codes (CPC and IPC). In this technique, some patents are classified

6Note that this assignment was made at the paper level using a probabilistic mapping which is di�erent
from the journal-based categorisation of Clarivate Analytics (Web of Science).
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based on only a subset of the technological codes, or keywords, whilst others are identified
by a combination of both.

The list of keywords used in this approach covers core AI methods as well as computing
and mathematical concepts used in such technologies. These keywords are matched to
the text in the patent titles, abstracts, and claims.

This approach identifies 158,652 patents.

B.5. United States Patent and Trademark O�ce (USPTO)
Classification

The USPTO approach uses a supervised machine learning (ML) classifier to identify AI
patents (see Giczy et al., 2021). This ML model is trained to classify eight components of
AI technologies, namely: machine learning, evolutionary computation, natural language
processing, speech, vision, knowledge processing, planning/control, and AI hardware.
The ML model is trained on the abstracts and claims of a seed (positive set) and an
anti-seed (negative set). The seeds are chosen carefully for each respective component by
taking an intersection of CPC, IPC, and USPC codes, as well as Derwent’s World Patents
IndexTM. The seeds are expanded based on patent families, CPC codes, and citations to
identify all patents linked to the seed set. The anti-seed set is selected randomly from
all remaining patents. For training, each text is pre-processed and embedded via the
Word2Vec algorithm. The ML models also encode backward and forward citations in a
citation vector. The predictions from the ML model are further validated using a small
subset of patents that are manually examined.

Published in August 2021, the resulting dataset contains 13.2 million USPTO patents
and pre-grant publications issued or published between 1976 and 2020. For consistency
with our other approaches, we only consider patents granted between 1990 and 2019 and
exclude pre-grant publications. The remaining data yields 595,047 patents.
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C. List of Keywords Used in Keyword Approach

Table C.1: List of Keywords from Cockburn et al., 2018
Symbols Learning Robotics
natural language process-
ing

machine learning computer vision

image grammars neural networks robot
pattern recognition reinforcement learning robots
image matching logic theorist robot systems
symbolic reasoning bayesian belief networks robotics
symbolic error analysis unsupervised learning robotic
pattern analysis deep learning collaborative systems
symbol processing knowledge representation and

reasoning
humanoid robotics

physical symbol system crowdsourcing and human
computation

sensor network

natural languages neuromorphic computing sensor networks
pattern analysis decision making sensor data fusion
image alignment machine intelligence systems and control theory
optimal search neural network layered control systems
symbolic reasoning
symbolic error analysis

D. A Study of AI Keywords in Patent Texts
We split all the patent texts into three time periods (1990-1999, 2000-2009, 2010-2019)
and search through the texts for keywords. Then, in each period (and for each category)
we counts the unique number of matching documents and what percentages of the AI
patents match according to this keyword. Figures D.1, D.2, and D.3 below illustrate
both counts and shares.
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Figure D.1: Symbolic Keywords: in Full Texts
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Figure D.2: Learning Keywords: in Full Texts
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Figure D.3: Robotics Keywords: in Full Texts
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E. Additional Results
E.1. Comparison to Benchmarks
The following figures reproduce time series of growth rates, counts, and shares for ad-
ditional groups of patents. The benchmarks were identified in previous discussions of
GPT technologies in the literature (nanotechnology, biochemistry, green technologies,
computing). Climate patents were also included as a group of technologies where one
can expect wide diversity, as climate inventions can be expected to cover many sectors
of the economy.

E.1.1. Growth

Figure E.4: Growth Rates of Benchmark Patents by Year
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Note: ‘All’ refers to all patents, G06, H04W, B82, C12, and Y02 refers to computing, wireless com-
munications, biochemistry/genetic engineering, nanotechnology, and climate invention-related patents,
respectively.
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E.1.2. Generality

Table E.2: Average Generality Index (1990-2019): Benchmark Categories
All G06 H04W C12 B82 Y02

1 digit 0.82 0.62 0.62 0.74 0.79 0.85
3 digit 0.95 0.82 0.82 0.85 0.92 0.95
4 digit 0.82 0.62 0.62 0.74 0.79 0.85

Notes: The generality index is defined as share of citations
to patents in di�erent CPC classes at di�erent aggregation
levels (see A.2). Citations within the same class are ex-
cluded. ‘All’ refers to all patents, G06, H04W, B82, C12,
and Y02 refers to computing, wireless communications,
biochemistry/genetic engineering, nanotechnology, and cli-
mate invention-related patents, respectively.

Figure E.5: Generality Index at the 1-digit CPC-section Level
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(b) Benchmark

Table E.3: Average CPC Classes Making Citations: Benchmark Categories
All G06 H04W C12 B82 Y02

1 digit 1.27 1.00 0.68 1.46 2.36 1.99
3 digit 2.48 1.99 1.19 2.52 4.39 3.32
4 digit 3.97 3.31 2.80 4.18 6.42 5.10

Notes: The table shows number of di�erent CPC classes
making a citation to an average patent of the respec-
tive group. Citations within the same class are excluded.
‘All’ refers to all patents, G06, H04W, B82, C12, and
Y02 refers to computing, wireless communications, bio-
chemistry/genetic engineering, nanotechnology, and cli-
mate invention-related patents, respectively.
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Figure E.6: Average Number of CPC Classes Citing AI
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(b) Benchmark

Note: ‘All’ refers to all patents, G06, H04W, B82, C12, and Y02 refers to computing, wireless com-
munications, biochemistry/genetic engineering, nanotechnology, and climate invention-related patents,
respectively.

Table E.4: Average Number of Citing CPC Classes – Cited Patents
All G06 H04W C12 B82 Y02

1 digit 2.39 2.03 2.00 2.78 3.35 3.29
3 digit 4.28 3.78 3.35 4.60 6.22 5.48
4 digit 6.44 5.96 5.63 7.47 9.08 8.42

Notes: The table reports numbers of di�erent CPC classes
making a citation to an average patent of the respective
group that receives at least one citation. Citations within
the same class are excluded. ‘All’ refers to all patents, G06,
H04W, B82, C12, and Y02 refers to computing, wireless
communications, biochemistry/genetic engineering, nan-
otechnology, and climate invention-related patents, respec-
tively.
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Figure E.7: Average Number of CPC Classes Citing AI: Subset of Cited Patents
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(b) Benchmark

Note: ‘All’ refers to all patents, G06, H04W, B82, C12, and Y02 refers to computing, wireless com-
munications, biochemistry/genetic engineering, nanotechnology, and climate invention-related patents,
respectively.

Table E.5: Average Citation Lags by Patents in Benchmark Categories
Period All G06 H04W C12 B82 Y02
1990-1999 13.57 12.78 12.47 14.58 12.14 13.49
2000-2009 9.19 9.00 8.75 10.15 8.58 8.92
2010-2019 4.29 4.19 3.83 4.29 4.33 4.08

Notes: This table shows the average number of years it takes until a patent in the sample is cited. The
average number of years is lower during the more recent decade as the maximal time lag is truncated
since our data ends in 2019. ‘All’ refers to all patents, G06, H04W, B82, C12, and Y02 refers to
computing, wireless communications, biochemistry/genetic engineering, nanotechnology, and climate
invention-related patents, respectively.
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E.1.3. Complementarity

Figure E.8: Share of Technology Classes: Diversity of Benchmark Categories
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Note: Panel (a) shows the percentage of 3-digit CPC codes and panel (b) shows the percentage of
4-digit CPC as a share of all codes in the respective category. Note that the total number of 3-digit and
4-digit CPC codes are 136 and 674, respectively. ‘All’ refers to all patents, G06, H04W, B82, C12, and
Y02 refers to computing, wireless communications, biochemistry/genetic engineering, nanotechnology,
and climate invention-related patents, respectively.

Table E.6: Yearly Average Number of 3- and 4-digits CPC Codes per Patent
All G06 H04W C12 B82 Y02

1 digit 1.36 1.36 1.32 1.80 2.48 2.47
3 digit 1.54 1.62 1.43 2.32 3.03 2.85
4 digit 1.80 1.81 2.26 2.93 3.50 3.39

Note: The table shows the average of annual average num-
ber of technology classes by 1-, 3- or 4-digit CPC per
patent. ‘All’ refers to all patents, G06, H04W, B82, C12,
and Y02 refers to computing, wireless communications,
biochemistry/genetic engineering, nanotechnology, and cli-
mate invention-related patents, respectively.
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Figure E.9: Average Technology Classes: Patent-Level Diversity of Benchmark Categories
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(b) Average Number of 3-digit CPC
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(c) Average Number of 4-digit CPC

Note: ‘All’ refers to all patents, G06, H04W, B82, C12, and Y02 refers to computing, wireless commu-
nications, biochemistry/genetic engineering, nanotechnology, and climate-related patents, respectively.
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E.2. Significance Tests
Here, we provide the results of a series of pair-wise Wilcoxon signed rank tests showing
whether the di�erences between the means reported in Table 2, E.40, E.41, E.39, E.42
are significant.

E.2.1. Growth

Table E.7: Growth Rates
period pair Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 1.00
1990-2019 WIPO 1.00 1.00
1990-2019 USPTO 1.00 1.00 1.00
1990-2019 All 0.07 0.00 0.00 0.00
1990-2019 G06 1.00 1.00 1.00 1.00 0.00
1990-2019 H04W 1.00 0.64 0.77 0.17 0.00 0.04
1990-2019 C12 0.91 0.08 0.41 0.79 1.00 0.78 0.01
1990-2019 B82 1.00 0.29 1.00 0.71 1.00 0.90 0.05 1.00
1990-2019 Y02 1.00 0.63 0.33 0.70 0.03 0.91 0.00 1.00 1.00
1990-1999 Science 1.00
1990-1999 WIPO 1.00 0.96
1990-1999 USPTO 1.00 1.00 1.00
1990-1999 All 1.00 0.47 1.00 0.18
1990-1999 G06 1.00 1.00 1.00 1.00 0.47
1990-1999 H04W 1.00 1.00 1.00 1.00 0.47 0.96
1990-1999 C12 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1990-1999 B82 1.00 1.00 1.00 1.00 0.18 1.00 1.00 1.00
1990-1999 Y02 1.00 0.33 1.00 0.33 1.00 0.18 0.47 1.00 0.47
2000-2009 Science 1.00
2000-2009 WIPO 1.00 1.00
2000-2009 USPTO 1.00 1.00 1.00
2000-2009 All 1.00 0.43 1.00 0.26
2000-2009 G06 1.00 1.00 1.00 1.00 0.56
2000-2009 H04W 1.00 1.00 1.00 1.00 1.00 1.00
2000-2009 C12 1.00 0.43 1.00 0.78 1.00 1.00 1.00
2000-2009 B82 1.00 1.00 1.00 1.00 0.43 1.00 1.00 1.00
2000-2009 Y02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010-2019 Science 0.55
2010-2019 WIPO 1.00 0.74
2010-2019 USPTO 0.89 1.00 0.89
2010-2019 All 0.14 0.74 0.09 0.98
2010-2019 G06 0.89 1.00 0.30 1.00 0.09
2010-2019 H04W 1.00 0.98 1.00 1.00 0.14 1.00
2010-2019 C12 1.00 1.00 0.30 1.00 1.00 1.00 0.19
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.40
2010-2019 Y02 1.00 1.00 1.00 1.00 0.19 1.00 0.89 0.74 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed rank test for the
hypothesis that the compared pair ranks equal.
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Table E.8: Summary Statistics for Growth Rates
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.16 0.15 0.14 0.13 0.05 0.13 0.21 0.08 0.08 0.08
Median 1990-2019 0.10 0.12 0.12 0.09 0.03 0.08 0.17 0.05 0.08 0.07
St.dev. 1990-2019 0.24 0.17 0.16 0.16 0.10 0.15 0.20 0.15 0.16 0.10
Mean 1990-1999 0.21 0.26 0.16 0.20 0.06 0.19 0.32 0.18 0.17 0.08
Median 1990-1999 0.10 0.27 0.09 0.12 0.03 0.16 0.30 0.13 0.09 0.07
St.dev. 1990-1999 0.29 0.17 0.17 0.19 0.10 0.18 0.23 0.17 0.14 0.07
Mean 2000-2009 0.06 0.10 0.09 0.09 0.01 0.08 0.12 -0.01 0.09 0.03
Median 2000-2009 -0.00 0.06 0.07 0.09 0.01 0.07 0.07 -0.06 0.09 0.02
St.dev. 2000-2009 0.24 0.18 0.19 0.15 0.09 0.15 0.21 0.14 0.13 0.09
Mean 2010-2019 0.22 0.11 0.18 0.12 0.08 0.12 0.19 0.09 -0.02 0.14
Median 2010-2019 0.19 0.07 0.16 0.08 0.07 0.09 0.19 0.06 -0.03 0.11
St.dev. 2010-2019 0.17 0.13 0.09 0.15 0.10 0.12 0.12 0.09 0.16 0.12

Table E.9: Growth Rates (Citing AI)
period pair Keyword Science WIPO USPTO G06 H04W C12 B82
1990-2019 Science 0.65
1990-2019 WIPO 1.00 1.00
1990-2019 USPTO 0.67 0.00 0.01
1990-2019 G06 0.09 0.00 0.00 1.00
1990-2019 H04W 0.17 0.85 1.00 0.01 0.00
1990-2019 C12 1.00 0.65 1.00 1.00 1.00 0.11
1990-2019 B82 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1990-2019 Y02 1.00 0.12 1.00 1.00 1.00 0.05 1.00 1.00
1990-1999 Science 0.14
1990-1999 WIPO 0.14 1.00
1990-1999 USPTO 1.00 0.14 0.24
1990-1999 G06 1.00 1.00 0.14 1.00
1990-1999 H04W 0.24 1.00 1.00 1.00 0.14
1990-1999 C12 1.00 1.00 1.00 1.00 1.00 0.79
1990-1999 B82 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1990-1999 Y02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000-2009 Science 1.00
2000-2009 WIPO 1.00 1.00
2000-2009 USPTO 1.00 0.70 1.00
2000-2009 G06 1.00 1.00 1.00 1.00
2000-2009 H04W 1.00 1.00 1.00 1.00 0.96
2000-2009 C12 1.00 1.00 1.00 1.00 1.00 1.00
2000-2009 B82 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000-2009 Y02 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010-2019 Science 1.00
2010-2019 WIPO 1.00 1.00
2010-2019 USPTO 1.00 0.66 1.00
2010-2019 G06 1.00 0.21 0.66 1.00
2010-2019 H04W 1.00 1.00 1.00 1.00 0.48
2010-2019 C12 1.00 1.00 1.00 1.00 1.00 1.00
2010-2019 B82 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010-2019 Y02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Table excludes those patents that themselves are AI by the respective classification
approach. Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the
hypothesis that the compared pair ranks equal.
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Table E.10: Summary Statistics for Growth Rates (Citing AI)
Keyword Science WIPO USPTO G06 H04W C12 B82 Y02

Mean 1990-2019 0.30 0.75 1.74 0.53 0.96 1.29 0.70 1.67 0.70
Median 1990-2019 0.11 0.13 0.12 0.09 0.11 0.19 0.08 0.12 0.10
St.dev. 1990-2019 0.48 2.56 8.01 1.71 4.08 5.34 2.58 7.77 2.65
Mean 1990-1999 0.73 2.15 5.38 1.52 2.91 3.89 2.07 5.14 2.07
Median 1990-1999 0.54 0.58 0.68 0.54 0.44 0.73 0.43 0.39 0.40
St.dev. 1990-1999 0.68 4.43 14.24 2.93 7.21 9.43 4.50 13.83 4.63
Mean 2000-2009 0.14 0.13 0.13 0.10 0.11 0.17 0.11 0.16 0.10
Median 2000-2009 0.11 0.10 0.12 0.09 0.09 0.12 0.04 0.13 0.09
St.dev. 2000-2009 0.16 0.16 0.16 0.13 0.13 0.19 0.22 0.17 0.15
Mean 2010-2019 0.08 0.09 0.09 0.06 0.05 0.09 0.07 0.07 0.07
Median 2010-2019 0.07 0.07 0.08 0.05 0.05 0.09 0.06 0.06 0.07
St.dev. 2010-2019 0.12 0.13 0.14 0.10 0.10 0.13 0.15 0.13 0.10

Notes: Table excludes those patents that themselves are AI by the respective classification
approach.

E.2.2. Generality

Table E.11: Generality Index at 1-Digit Level.
Period 1-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.05
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.00 0.00 0.03
1990-2019 C12 0.00 0.47 0.47 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.14
1990-1999 WIPO 0.11 0.77
1990-1999 USPTO 0.09 0.09 0.09
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 0.25
1990-1999 C12 0.09 0.20 0.14 0.32 0.09 0.09 0.09
1990-1999 B82 0.14 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.09
2010-2019 WIPO 0.09 0.22
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 0.22 0.09
2010-2019 H04W 0.09 0.09 0.09 0.22 0.09 0.49
2010-2019 C12 0.22 0.22 0.19 0.09 0.09 0.09 0.09
2010-2019 B82 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed rank test for the
hypothesis that the compared pair ranks equal.
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Table E.12: Summary Statistics for Generality Index at 1-Digit Level.
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.76 0.73 0.72 0.68 0.82 0.64 0.62 0.73 0.79 0.84
Median 1990-2019 0.76 0.73 0.72 0.68 0.81 0.63 0.62 0.73 0.79 0.85
St.dev. 1990-2019 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.01
Mean 1990-1999 0.77 0.74 0.75 0.7 0.84 0.64 0.62 0.72 0.8 0.85
Median 1990-1999 0.77 0.75 0.76 0.71 0.84 0.64 0.63 0.73 0.8 0.85
St.dev. 1990-1999 0.02 0.02 0.02 0.02 0.01 0.02 0.03 0.01 0.01 0
Mean 2000-2009 0.76 0.73 0.71 0.67 0.81 0.62 0.6 0.74 0.78 0.84
Median 2000-2009 0.76 0.73 0.72 0.68 0.81 0.61 0.59 0.74 0.79 0.85
St.dev. 2000-2009 0.01 0.01 0.01 0 0.01 0.01 0.02 0.01 0.01 0.01
Mean 2010-2019 0.76 0.72 0.71 0.67 0.81 0.65 0.65 0.73 0.78 0.84
Median 2010-2019 0.76 0.72 0.71 0.67 0.8 0.64 0.66 0.74 0.78 0.84
St.dev. 2010-2019 0.02 0.01 0.01 0.01 0 0.02 0.02 0.03 0.01 0

Table E.13: Generality Index at 3-Digit Level
Period 3-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.90
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.23 0.00 0.90
1990-2019 C12 0.00 0.03 0.01 0.14 0.00 0.00 0.00
1990-2019 B82 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 0.10 0.09
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 1.00
1990-1999 C12 0.09 0.09 0.09 0.22 0.09 1.00 1.00
1990-1999 B82 1.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.19
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 1.00
2000-2009 C12 0.09 0.09 0.10 0.09 0.09 0.09 0.09
2000-2009 B82 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 1.00 0.09 0.09 0.09 0.09
2010-2019 Science 0.09
2010-2019 WIPO 0.09 0.59
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 1.00 0.09
2010-2019 H04W 0.09 0.97 0.09 0.59 0.09 0.16
2010-2019 C12 0.09 0.09 1.00 0.09 0.09 0.09 0.12
2010-2019 B82 0.97 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.97 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.14: Summary Statistics for Generality Index at 3-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.9 0.87 0.87 0.84 0.95 0.82 0.82 0.85 0.91 0.94
Median 1990-2019 0.9 0.86 0.86 0.83 0.95 0.82 0.82 0.85 0.92 0.94
St.dev. 1990-2019 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01
Mean 1990-1999 0.92 0.88 0.89 0.86 0.96 0.84 0.83 0.84 0.92 0.95
Median 1990-1999 0.92 0.88 0.89 0.87 0.96 0.85 0.83 0.84 0.92 0.95
St.dev. 1990-1999 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0
Mean 2000-2009 0.9 0.87 0.86 0.83 0.94 0.81 0.81 0.85 0.91 0.95
Median 2000-2009 0.9 0.87 0.86 0.83 0.95 0.81 0.81 0.85 0.92 0.94
St.dev. 2000-2009 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0
Mean 2010-2019 0.89 0.85 0.86 0.81 0.94 0.82 0.83 0.86 0.9 0.94
Median 2010-2019 0.9 0.85 0.86 0.81 0.94 0.82 0.84 0.86 0.9 0.94
St.dev. 2010-2019 0.02 0.01 0.01 0.01 0 0.01 0.02 0.01 0.02 0.01

Table E.15: Generality Index at 4-Digit Level
Period 4-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.00
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.42 0.01 0.00 0.00 0.00
1990-2019 B82 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 0.42
1990-1999 USPTO 0.09 0.97 1.00
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 C12 0.09 0.09 0.10 0.39 0.09 0.09 0.09
1990-1999 B82 1.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.64 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.10 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.23 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 1.00
2010-2019 WIPO 0.67 0.58
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 1.00 0.09
2010-2019 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 C12 0.09 0.49 1.00 0.09 0.09 0.09 0.09
2010-2019 B82 0.21 1.00 1.00 0.18 0.09 0.18 0.09 1.00
2010-2019 Y02 0.09 0.09 0.09 0.09 1.00 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.16: Summary Statistics for Generality Index at 4-Digit Level.
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.96 0.95 0.94 0.93 0.98 0.92 0.89 0.94 0.95 0.98
Median 1990-2019 0.96 0.95 0.94 0.93 0.98 0.92 0.88 0.94 0.95 0.98
St.dev. 1990-2019 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.02 0.01
Mean 1990-1999 0.96 0.95 0.95 0.95 0.99 0.93 0.89 0.94 0.96 0.99
Median 1990-1999 0.97 0.95 0.95 0.95 0.98 0.93 0.89 0.94 0.97 0.99
St.dev. 1990-1999 0.01 0.01 0.01 0.01 0 0.01 0.01 0 0 0
Mean 2000-2009 0.96 0.94 0.94 0.93 0.98 0.92 0.88 0.94 0.95 0.98
Median 2000-2009 0.96 0.95 0.94 0.93 0.98 0.92 0.88 0.94 0.95 0.98
St.dev. 2000-2009 0 0 0 0 0 0 0 0 0.01 0
Mean 2010-2019 0.95 0.94 0.94 0.92 0.98 0.92 0.89 0.93 0.94 0.98
Median 2010-2019 0.95 0.94 0.94 0.92 0.98 0.92 0.89 0.94 0.94 0.98
St.dev. 2010-2019 0.01 0 0.01 0 0 0 0.01 0.01 0.02 0.01

Table E.17: Average Number of Citing Classes (All) at 1-Digit Level
Period 1-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 1.00
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.01 1.00
1990-2019 H04W 0.00 0.00 0.00 0.00 1.00 1.00
1990-2019 C12 0.00 1.00 1.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 1.00 1.00
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 1.00 1.00 1.00 0.21 0.09
1990-1999 C12 0.09 1.00 0.84 0.84 0.09 0.09 0.84
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.12
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.75
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.92
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.11
2010-2019 Science 0.22
2010-2019 WIPO 0.22 0.09
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.75
2010-2019 G06 0.09 0.09 0.09 0.09 0.22
2010-2019 H04W 0.09 0.09 0.09 0.09 0.22 0.09
2010-2019 C12 0.09 0.25 1.00 0.09 0.09 0.09 0.09
2010-2019 B82 0.09 0.22 0.10 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.18: Summary Statistics for Average Number of Citing Classes (All) at 1-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 2.15 1.83 1.82 1.68 1.55 1.54 1.54 1.81 2.82 2.8
Median 1990-2019 2.51 2.06 2.17 1.86 1.74 1.74 1.64 1.93 3.43 3.29
St.dev. 1990-2019 0.93 0.76 0.79 0.82 0.72 0.68 0.81 0.8 1.27 1.17
Mean 1990-1999 2.97 2.54 2.52 2.5 2.24 2.17 2.44 2.61 3.85 3.78
Median 1990-1999 2.96 2.54 2.52 2.52 2.25 2.16 2.44 2.59 3.87 3.79
St.dev. 1990-1999 0.12 0.06 0.08 0.09 0.04 0.04 0.21 0.1 0.08 0.07
Mean 2000-2009 2.46 2.04 2.07 1.84 1.74 1.74 1.59 1.94 3.37 3.24
Median 2000-2009 2.51 2.06 2.17 1.86 1.74 1.74 1.64 1.93 3.43 3.29
St.dev. 2000-2009 0.42 0.35 0.43 0.4 0.31 0.33 0.28 0.34 0.52 0.37
Mean 2010-2019 1.03 0.92 0.87 0.7 0.68 0.72 0.59 0.88 1.23 1.38
Median 2010-2019 1.12 1.02 0.98 0.76 0.72 0.81 0.63 0.96 1.26 1.43
St.dev. 2010-2019 0.56 0.45 0.43 0.37 0.4 0.37 0.32 0.49 0.76 0.85

Table E.19: Average Number of Citing Classes (All) at 3-Digit Level
Period 3-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.00
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.00 0.82 0.04
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.01 0.44
1990-2019 B82 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 0.34
1990-1999 USPTO 0.09 0.70 0.32
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 0.58
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.16
1990-1999 B82 0.64 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.13 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.13 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.25
2010-2019 WIPO 0.27 0.67
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 1.00 0.25
2010-2019 H04W 0.09 0.09 0.09 0.09 0.25 0.09
2010-2019 C12 0.09 0.09 0.09 0.19 0.09 0.67 0.15
2010-2019 B82 0.58 1.00 1.00 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 1.00 0.67 0.67 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.20: Summary Statistics for Average Number of Citing Classes (All) at 3-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 5.18 4.14 4.39 3.91 3.1 3.47 3.23 3.24 5.51 4.9
Median 1990-2019 6.01 4.54 5.12 4.15 3.43 3.74 3.25 3.37 6.78 5.73
St.dev. 1990-2019 2.59 2.07 2.22 2.27 1.61 1.87 2.05 1.66 2.89 2.31
Mean 1990-1999 7.61 6.28 6.48 6.32 4.71 5.39 5.62 5.02 7.86 7.01
Median 1990-1999 7.65 6.16 6.48 6.38 4.73 5.42 5.73 4.95 7.94 7.09
St.dev. 1990-1999 0.37 0.39 0.27 0.26 0.1 0.17 0.68 0.25 0.38 0.23
Mean 2000-2009 5.91 4.46 4.99 4.18 3.44 3.79 3.13 3.4 6.79 5.64
Median 2000-2009 6.01 4.54 5.12 4.15 3.43 3.74 3.25 3.37 6.78 5.73
St.dev. 2000-2009 1.28 0.92 1.3 1.22 0.77 1.02 0.77 0.74 1.61 0.88
Mean 2010-2019 2 1.67 1.7 1.23 1.16 1.24 0.93 1.31 1.89 2.06
Median 2010-2019 2.11 1.79 1.85 1.28 1.19 1.35 0.96 1.39 1.82 2.05
St.dev. 2010-2019 1.22 0.9 0.93 0.72 0.72 0.69 0.53 0.78 1.28 1.34

Table E.21: Average Number of Citing Classes (All) at 4-Digit Level
Period 4-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.00
1990-2019 USPTO 0.00 0.16 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.82 0.28 0.06 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.04 0.00
1990-2019 B82 0.00 0.09 0.57 0.00 0.00 0.00 0.16 0.00
1990-2019 Y02 0.00 0.16 0.16 0.08 0.00 0.00 0.74 0.00 0.09
1990-1999 Science 0.09
1990-1999 WIPO 0.09 0.95
1990-1999 USPTO 0.09 1.00 1.00
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 1.00 0.09 0.77 0.09 0.09 0.09
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 1.00 0.09
1990-1999 B82 0.09 0.95 1.00 0.77 0.09 0.09 1.00 0.09
1990-1999 Y02 0.09 1.00 0.09 0.84 0.09 0.09 0.25 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.80 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 1.00 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 1.00 0.09 0.09
2000-2009 B82 1.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.93 0.09 0.09 0.09 0.09 0.09 0.12
2010-2019 Science 0.18
2010-2019 WIPO 0.19 0.18
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 0.12 0.09
2010-2019 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 C12 0.09 0.09 0.09 0.18 0.09 1.00 0.09
2010-2019 B82 0.09 0.09 0.09 0.18 0.09 0.14 0.77 0.09
2010-2019 Y02 0.09 1.00 1.00 0.09 0.09 0.09 0.12 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.22: Summary Statistics for Average Number of Citing Classes (All) at 4-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 8.9 7.41 8.04 7.13 4.96 5.83 7.52 5.48 8.28 7.66
Median 1990-2019 10.49 8.12 9.44 7.58 5.49 6.31 7.81 5.47 10.06 9.03
St.dev. 1990-2019 4.48 3.76 4.12 4.21 2.59 3.2 4.63 3.01 4.65 3.76
Mean 1990-1999 13.02 11.31 11.81 11.54 7.53 9.06 12.82 8.82 12.19 11.06
Median 1990-1999 13.11 11.08 11.85 11.7 7.57 9.06 13.16 8.76 12.21 11.22
St.dev. 1990-1999 0.51 0.67 0.41 0.31 0.23 0.16 1.28 0.51 0.86 0.51
Mean 2000-2009 10.31 8 9.28 7.7 5.54 6.43 7.53 5.58 10.14 8.9
Median 2000-2009 10.49 8.12 9.44 7.58 5.49 6.31 7.81 5.47 10.06 9.03
St.dev. 2000-2009 2.26 1.69 2.51 2.37 1.28 1.83 1.82 1.34 2.84 1.56
Mean 2010-2019 3.39 2.93 3.04 2.14 1.83 2.01 2.22 2.05 2.51 3.01
Median 2010-2019 3.51 3.09 3.28 2.22 1.87 2.16 2.26 2.14 2.39 2.92
St.dev. 2010-2019 2.13 1.64 1.74 1.32 1.17 1.18 1.34 1.25 1.75 2.04

Table E.23: Average Number of Citing Classes (Cited) at 1-Digit Level
Period 1-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 1.00
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.05 0.00
1990-2019 G06 0.00 0.00 0.00 0.02 0.00
1990-2019 H04W 0.00 0.00 0.00 0.76 0.00 0.02
1990-2019 C12 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 1.00 0.79
1990-1999 All 0.09 0.14 0.22 1.00
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.26 0.14 0.11 0.97 0.09
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 1.00
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.97
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.34 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.14 0.09 0.97
2000-2009 C12 0.97 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.09
2010-2019 WIPO 0.09 1.00
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 1.00 1.00 0.09
2010-2019 G06 0.09 0.09 0.09 0.09 0.09
2010-2019 H04W 0.09 0.14 0.09 0.09 0.14 0.09
2010-2019 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.24: Summary Statistics for Average Number of Citing Classes (Cited) at 1-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 2.71 2.42 2.41 2.26 2.36 2.14 2.22 2.75 3.39 3.39
Median 1990-2019 2.87 2.52 2.55 2.25 2.4 2.15 2.17 2.8 3.66 3.55
St.dev. 1990-2019 0.49 0.36 0.38 0.44 0.33 0.28 0.35 0.3 0.62 0.55
Mean 1990-1999 3.18 2.78 2.8 2.75 2.71 2.45 2.64 3.05 3.92 3.92
Median 1990-1999 3.2 2.79 2.82 2.77 2.73 2.44 2.65 3.06 3.95 3.92
St.dev. 1990-1999 0.13 0.06 0.08 0.09 0.03 0.04 0.16 0.09 0.09 0.07
Mean 2000-2009 2.82 2.48 2.46 2.24 2.4 2.15 2.13 2.79 3.65 3.53
Median 2000-2009 2.87 2.52 2.55 2.25 2.4 2.15 2.17 2.8 3.66 3.55
St.dev. 2000-2009 0.29 0.23 0.29 0.27 0.19 0.2 0.15 0.15 0.34 0.25
Mean 2010-2019 2.13 1.98 1.98 1.77 1.98 1.83 1.88 2.41 2.61 2.71
Median 2010-2019 2.18 1.99 2 1.78 1.98 1.83 1.88 2.45 2.59 2.71
St.dev. 2010-2019 0.19 0.08 0.07 0.05 0.09 0.03 0.03 0.18 0.27 0.28

Table E.25: Average Number of Citing Classes (Cited) at 3-Digit Level
Period 3-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.00
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.03
1990-2019 G06 0.00 0.00 0.00 0.00 0.50
1990-2019 H04W 0.00 0.00 0.00 0.00 0.79 0.79
1990-2019 C12 0.00 0.00 0.00 0.50 0.00 0.04 0.05
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.09
1990-1999 WIPO 0.09 0.92
1990-1999 USPTO 0.09 0.97 0.96
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.16 0.97
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.97 0.97
1990-1999 B82 0.97 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.14 0.14 0.11 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.10
2000-2009 G06 0.09 0.09 0.09 0.09 1.00
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 1.00 0.09 0.26 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.26 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.21
2010-2019 WIPO 0.33 0.33
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 0.93 0.09
2010-2019 H04W 0.09 0.09 0.09 1.00 0.53 1.00
2010-2019 C12 0.27 0.34 1.00 0.09 0.09 0.09 0.09
2010-2019 B82 0.16 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.50

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.26: Summary Statistics for Average Number of Citing Classes (Cited) at 3-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 5.99 5 5.23 4.74 4.21 4.31 4.25 4.55 6.38 5.77
Median 1990-2019 6.54 5.26 5.63 4.73 4.34 4.33 4.11 4.66 7.21 6.18
St.dev. 1990-2019 1.93 1.48 1.59 1.74 1.09 1.33 1.42 1.01 2.05 1.51
Mean 1990-1999 7.87 6.59 6.8 6.68 5.35 5.75 5.97 5.63 7.99 7.26
Median 1990-1999 7.91 6.5 6.84 6.73 5.37 5.77 6.11 5.57 8.07 7.32
St.dev. 1990-1999 0.36 0.35 0.25 0.25 0.09 0.14 0.62 0.24 0.39 0.23
Mean 2000-2009 6.45 5.16 5.54 4.78 4.36 4.39 3.99 4.65 7.31 6.14
Median 2000-2009 6.54 5.26 5.63 4.73 4.34 4.33 4.11 4.66 7.23 6.18
St.dev. 2000-2009 1.07 0.77 1.07 1.02 0.6 0.83 0.58 0.46 1.31 0.71
Mean 2010-2019 3.65 3.25 3.35 2.75 2.92 2.78 2.78 3.37 3.83 3.92
Median 2010-2019 3.76 3.24 3.43 2.75 2.92 2.83 2.8 3.41 3.72 3.86
St.dev. 2010-2019 0.72 0.35 0.38 0.32 0.35 0.24 0.13 0.44 0.76 0.64

Table E.27: Average Number of Citing Classes (Cited) at 4-Digit Level
Period 4-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.00
1990-2019 WIPO 0.00 0.00
1990-2019 USPTO 0.00 0.12 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 1.00 0.18 1.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.11 0.00 0.01 0.18
1990-2019 B82 0.01 0.01 0.15 0.00 0.00 0.00 0.04 0.00
1990-2019 Y02 0.00 0.03 1.00 0.04 0.00 0.00 0.29 0.00 0.12
1990-1999 Science 0.09
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 0.59 1.00
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 1.00 0.09 1.00 0.48 0.09 0.09
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 1.00 0.09
1990-1999 B82 0.09 1.00 1.00 1.00 0.09 0.09 1.00 0.09
1990-1999 Y02 0.09 1.00 0.29 0.71 0.09 0.09 0.38 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.32 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.10
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.22 0.09 1.00 0.32
2000-2009 B82 1.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 1.00 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.45
2010-2019 WIPO 1.00 0.41
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 1.00 1.00
2010-2019 H04W 0.09 0.09 0.09 1.00 0.41 0.16
2010-2019 C12 0.45 1.00 0.84 0.09 0.09 0.09 0.09
2010-2019 B82 0.10 1.00 0.84 0.09 0.09 0.09 0.09 1.00
2010-2019 Y02 1.00 0.09 0.41 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.28: Summary Statistics for Average Number of Citing Classes (Cited) at 4-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 9.92 8.54 9.05 8.21 6.36 6.95 8.35 7.41 9.43 8.92
Median 1990-2019 11.14 9.13 9.98 8.32 6.65 7.11 8.16 7.4 10.7 9.74
St.dev. 1990-2019 3.61 2.94 3.2 3.48 1.9 2.45 3.81 2.07 3.61 2.68
Mean 1990-1999 13.3 11.63 12.06 11.99 8.29 9.52 12.9 9.69 12.39 11.45
Median 1990-1999 13.34 11.45 12.07 12.09 8.35 9.51 13.21 9.61 12.47 11.65
St.dev. 1990-1999 0.55 0.6 0.43 0.28 0.24 0.16 1.26 0.49 0.88 0.53
Mean 2000-2009 10.94 8.95 9.87 8.47 6.7 7.24 7.92 7.47 10.9 9.68
Median 2000-2009 11.14 9.13 9.98 8.32 6.65 7.11 8.16 7.4 10.73 9.74
St.dev. 2000-2009 2.04 1.53 2.23 2.11 1.06 1.59 1.62 0.92 2.44 1.3
Mean 2010-2019 5.51 5.04 5.22 4.18 4.08 4.1 4.22 5.06 5 5.62
Median 2010-2019 5.66 4.99 5.34 4.21 4.11 4.21 4.25 5.12 4.87 5.51
St.dev. 2010-2019 1.42 0.83 0.89 0.74 0.68 0.57 0.54 0.87 1.15 1.18

E.2.3. Complementarity

Table E.29: Share of CPC Classes at 3-Digit Level
Period 3-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.29
1990-2019 WIPO 0.15 0.29
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.29
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.32
1990-1999 WIPO 0.32 0.14
1990-1999 USPTO 0.09 0.09 0.13
1990-1999 All 0.13 0.13 0.13 0.09
1990-1999 G06 0.10 0.13 0.13 0.13 0.09
1990-1999 H04W 0.13 0.09 0.09 0.09 0.13 0.09
1990-1999 C12 0.10 0.32 0.09 0.09 0.13 0.09 0.13
1990-1999 B82 0.13 0.13 0.09 0.09 0.13 0.09 0.09 0.17
1990-1999 Y02 0.09 0.09 0.13 0.13 0.13 0.09 0.09 0.13 0.09
2000-2009 Science 1.00
2000-2009 WIPO 1.00 0.77
2000-2009 USPTO 0.18 0.09 0.18
2000-2009 All 0.18 0.18 0.18 0.18
2000-2009 G06 0.18 0.18 0.18 0.18 0.18
2000-2009 H04W 0.18 0.09 0.09 0.18 0.18 0.09
2000-2009 C12 0.09 0.09 0.12 0.09 0.18 0.09 0.09
2000-2009 B82 0.63 0.63 1.00 0.09 0.18 0.18 0.18 0.18
2000-2009 Y02 0.18 0.09 0.09 0.18 0.18 0.18 0.18 0.09 0.18
2010-2019 Science 0.88
2010-2019 WIPO 0.09 0.13
2010-2019 USPTO 0.13 0.09 0.09
2010-2019 All 0.13 0.09 0.09 0.13
2010-2019 G06 0.13 0.13 0.13 0.88 0.09
2010-2019 H04W 0.09 0.09 0.09 0.09 0.13 0.09
2010-2019 C12 0.09 0.09 0.13 0.09 0.13 0.13 0.09
2010-2019 B82 0.09 0.09 0.88 0.09 0.13 0.09 0.13 0.88
2010-2019 Y02 0.09 0.09 0.09 0.13 0.13 0.13 0.13 0.13 0.13

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.30: Summary Statistics for Share of CPC Classes at 3-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.61 0.6 0.59 0.82 0.93 0.7 0.3 0.51 0.54 0.87
Median 1990-2019 0.6 0.59 0.57 0.83 0.93 0.71 0.28 0.49 0.57 0.88
St.dev. 1990-2019 0.15 0.16 0.12 0.06 0 0.13 0.17 0.12 0.14 0.03
Mean 1990-1999 0.47 0.43 0.48 0.76 0.93 0.56 0.13 0.4 0.37 0.85
Median 1990-1999 0.45 0.43 0.51 0.75 0.93 0.56 0.12 0.4 0.36 0.85
St.dev. 1990-1999 0.08 0.1 0.07 0.05 0 0.06 0.03 0.06 0.06 0.02
Mean 2000-2009 0.59 0.59 0.57 0.82 0.93 0.7 0.27 0.48 0.57 0.87
Median 2000-2009 0.6 0.58 0.57 0.83 0.93 0.71 0.28 0.49 0.57 0.88
St.dev. 2000-2009 0.04 0.03 0.04 0.02 0 0.04 0.05 0.04 0.05 0.02
Mean 2010-2019 0.78 0.77 0.71 0.87 0.93 0.85 0.49 0.64 0.68 0.9
Median 2010-2019 0.79 0.77 0.69 0.86 0.93 0.85 0.46 0.69 0.67 0.91
St.dev. 2010-2019 0.08 0.06 0.08 0.03 0 0.04 0.11 0.09 0.04 0.02

Table E.31: Share of CPC Classes at 4-Digit Level
Period 4-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.83
1990-2019 WIPO 0.83 0.33
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 0.77
1990-1999 WIPO 0.48 0.42
1990-1999 USPTO 0.09 0.09 0.09
1990-1999 All 0.09 0.09 0.09 0.09
1990-1999 G06 0.09 0.09 0.09 0.09 0.09
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 C12 0.09 0.48 0.09 0.09 0.09 0.09 0.09
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.92 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.48
2010-2019 WIPO 0.09 0.22
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 0.22 0.09
2010-2019 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.22
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.25 0.46
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.32: Summary Statistics for the Share of CPC Classes at 4-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 0.37 0.37 0.36 0.6 0.96 0.49 0.17 0.27 0.29 0.74
Median 1990-2019 0.33 0.35 0.33 0.6 0.96 0.48 0.14 0.25 0.31 0.72
St.dev. 1990-2019 0.14 0.13 0.12 0.1 0.01 0.15 0.13 0.08 0.09 0.06
Mean 1990-1999 0.24 0.24 0.25 0.48 0.96 0.33 0.06 0.2 0.18 0.68
Median 1990-1999 0.24 0.23 0.27 0.48 0.96 0.33 0.06 0.2 0.17 0.68
St.dev. 1990-1999 0.06 0.07 0.05 0.05 0 0.05 0.02 0.03 0.03 0.03
Mean 2000-2009 0.33 0.36 0.33 0.6 0.96 0.47 0.14 0.24 0.3 0.72
Median 2000-2009 0.33 0.35 0.33 0.6 0.96 0.48 0.14 0.24 0.31 0.72
St.dev. 2000-2009 0.02 0.02 0.02 0.02 0 0.03 0.03 0.01 0.03 0.01
Mean 2010-2019 0.54 0.53 0.5 0.71 0.97 0.66 0.32 0.36 0.39 0.81
Median 2010-2019 0.56 0.53 0.5 0.7 0.97 0.67 0.31 0.38 0.39 0.82
St.dev. 2010-2019 0.09 0.07 0.09 0.05 0.01 0.08 0.11 0.07 0.02 0.04

Table E.33: Average Diversity at 1-Digit Level
Period 1-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 1.00
1990-2019 WIPO 0.02 0.05
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.02 1.00 0.00
1990-2019 G06 0.00 0.06 1.00 0.00 1.00
1990-2019 H04W 0.00 0.01 0.03 0.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82
1990-1999 Science 1.00
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 0.84 0.15
1990-1999 All 0.25 1.00 0.09 0.09
1990-1999 G06 0.09 1.00 0.15 0.09 0.45
1990-1999 H04W 1.00 1.00 0.84 0.09 1.00 1.00
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.71
2000-2009 Science 0.09
2000-2009 WIPO 0.29 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.83 0.09
2000-2009 G06 0.09 0.09 0.83 0.09 0.83
2000-2009 H04W 0.09 0.09 0.09 0.29 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.29
2010-2019 Science 1.00
2010-2019 WIPO 1.00 1.00
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.58 0.11 0.84 0.09
2010-2019 G06 1.00 1.00 1.00 0.09 0.84
2010-2019 H04W 0.09 0.09 0.09 0.27 0.09 0.09
2010-2019 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.34: Summary Statistics for Average Diversity at 1-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 1.39 1.4 1.36 1.27 1.36 1.36 1.32 1.8 2.48 2.47
Median 1990-2019 1.36 1.42 1.33 1.24 1.33 1.32 1.29 1.78 2.48 2.46
St.dev. 1990-2019 0.09 0.1 0.12 0.08 0.08 0.11 0.08 0.15 0.11 0.05
Mean 1990-1999 1.35 1.3 1.27 1.24 1.31 1.29 1.33 1.64 2.39 2.43
Median 1990-1999 1.35 1.28 1.27 1.24 1.32 1.29 1.29 1.65 2.37 2.43
St.dev. 1990-1999 0.03 0.08 0.02 0.01 0.02 0.01 0.08 0.08 0.08 0.03
Mean 2000-2009 1.35 1.43 1.33 1.24 1.33 1.32 1.26 1.79 2.48 2.46
Median 2000-2009 1.36 1.43 1.33 1.24 1.33 1.32 1.26 1.78 2.48 2.45
St.dev. 2000-2009 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.04 0.03 0.01
Mean 2010-2019 1.47 1.47 1.48 1.35 1.45 1.47 1.37 1.97 2.58 2.52
Median 2010-2019 1.48 1.47 1.47 1.35 1.44 1.48 1.36 1.99 2.55 2.51
St.dev. 2010-2019 0.11 0.08 0.14 0.11 0.09 0.12 0.09 0.08 0.1 0.06

Table E.35: Average Diversity at 3-Digit Level
Period 3-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.65
1990-2019 WIPO 0.38 0.87
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.79 0.79 0.46 0.00 0.00
1990-2019 H04W 0.00 0.00 0.00 0.79 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 1.00
1990-1999 WIPO 0.09 1.00
1990-1999 USPTO 0.09 0.09 0.09
1990-1999 All 0.09 1.00 0.76 0.09
1990-1999 G06 1.00 1.00 0.09 0.09 0.09
1990-1999 H04W 0.09 1.00 0.49 1.00 1.00 0.09
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.09
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.92 0.09 0.09 0.09 0.09
2000-2009 H04W 0.09 0.09 0.09 0.86 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 1.00
2010-2019 WIPO 0.09 0.10
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.32 1.00 0.09 0.09 0.09
2010-2019 H04W 0.09 0.09 0.09 0.10 0.09 0.09
2010-2019 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.36: Summary Statistics for Average Diversity at 3-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 1.61 1.64 1.64 1.43 1.54 1.62 1.43 2.32 3.03 2.85
Median 1990-2019 1.55 1.65 1.58 1.39 1.48 1.56 1.39 2.35 2.99 2.81
St.dev. 1990-2019 0.15 0.14 0.21 0.12 0.12 0.15 0.11 0.16 0.19 0.12
Mean 1990-1999 1.55 1.51 1.5 1.39 1.48 1.57 1.43 2.16 2.88 2.77
Median 1990-1999 1.56 1.48 1.48 1.4 1.48 1.57 1.4 2.16 2.86 2.79
St.dev. 1990-1999 0.04 0.1 0.04 0.02 0.03 0.04 0.09 0.15 0.09 0.06
Mean 2000-2009 1.54 1.69 1.58 1.36 1.48 1.54 1.35 2.36 3.01 2.81
Median 2000-2009 1.54 1.68 1.59 1.36 1.48 1.54 1.35 2.36 3.01 2.81
St.dev. 2000-2009 0.02 0.05 0.05 0.02 0.01 0.02 0.03 0.04 0.07 0.03
Mean 2010-2019 1.74 1.73 1.85 1.53 1.67 1.75 1.49 2.46 3.2 2.96
Median 2010-2019 1.73 1.71 1.82 1.52 1.65 1.74 1.46 2.48 3.15 2.91
St.dev. 2010-2019 0.2 0.14 0.26 0.17 0.15 0.21 0.14 0.08 0.22 0.14

Table E.37: Average Diversity at 4-Digit Level
Period 4-digit Keyword Science WIPO USPTO All G06 H04W C12 B82
1990-2019 Science 0.01
1990-2019 WIPO 0.00 0.10
1990-2019 USPTO 0.00 0.00 0.00
1990-2019 All 0.00 0.00 0.00 0.00
1990-2019 G06 0.00 0.00 0.00 0.00 0.52
1990-2019 H04W 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 B82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-2019 Y02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1990-1999 Science 1.00
1990-1999 WIPO 1.00 1.00
1990-1999 USPTO 0.09 0.09 0.09
1990-1999 All 0.09 1.00 0.09 0.09
1990-1999 G06 0.09 1.00 0.09 0.09 1.00
1990-1999 H04W 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1990-1999 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10
2000-2009 Science 0.09
2000-2009 WIPO 0.09 0.26
2000-2009 USPTO 0.09 0.09 0.09
2000-2009 All 0.09 0.09 0.09 0.09
2000-2009 G06 0.09 0.09 0.09 0.09 0.28
2000-2009 H04W 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2000-2009 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Science 0.25
2010-2019 WIPO 0.09 0.09
2010-2019 USPTO 0.09 0.09 0.09
2010-2019 All 0.09 0.09 0.09 0.09
2010-2019 G06 0.09 0.09 0.09 0.09 0.64
2010-2019 H04W 0.09 0.09 0.70 0.09 0.09 0.09
2010-2019 C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 B82 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2010-2019 Y02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.15

Notes: Entries show the p-value of a two-sided paired Wilcoxon signed-rank test for the hy-
pothesis that the compared pair ranks equal.
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Table E.38: Summary Statistics for Average Diversity at 4-Digit Level
Keyword Science WIPO USPTO All G06 H04W C12 B82 Y02

Mean 1990-2019 1.88 1.97 2.05 1.64 1.8 1.81 2.26 2.93 3.5 3.39
Median 1990-2019 1.77 1.97 1.96 1.56 1.71 1.71 2.2 2.89 3.41 3.36
St.dev. 1990-2019 0.26 0.25 0.38 0.21 0.21 0.25 0.21 0.3 0.27 0.23
Mean 1990-1999 1.77 1.73 1.76 1.55 1.68 1.69 2.16 2.64 3.31 3.2
Median 1990-1999 1.77 1.67 1.75 1.56 1.68 1.71 2.14 2.65 3.3 3.21
St.dev. 1990-1999 0.05 0.13 0.04 0.03 0.04 0.04 0.07 0.2 0.14 0.1
Mean 2000-2009 1.75 2 1.95 1.53 1.7 1.69 2.16 2.9 3.46 3.35
Median 2000-2009 1.75 1.99 1.98 1.54 1.7 1.69 2.17 2.89 3.44 3.36
St.dev. 2000-2009 0.03 0.06 0.09 0.02 0.01 0.03 0.09 0.07 0.1 0.05
Mean 2010-2019 2.12 2.19 2.43 1.83 2.01 2.05 2.45 3.24 3.72 3.63
Median 2010-2019 2.09 2.16 2.39 1.82 2 2.02 2.4 3.31 3.66 3.58
St.dev. 2010-2019 0.35 0.26 0.44 0.28 0.24 0.32 0.26 0.2 0.33 0.22
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E.3. Extra Tables Moved Down
E.3.1. Volume and Time Trends

Figure E.10: AI Patents by Year (1990-2019)
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(a) Share of AI patents

Notes: This figure shows the evolution of AI patents over time as identified by the four di�erent
approaches, as a share of all US patents granted in the same year.

E.3.2. Generality

Table E.39: Average Number of Citing CPC Classes (1990-2019): Cited Patents
Keyword Science WIPO USPTO

1 digit 2.71 2.42 2.41 2.26
3 digit 5.99 5.00 5.23 4.74
4 digit 9.92 8.54 9.05 8.21

Notes: This table shows the numbers of di�erent CPC
classes making a citation to an average patent of the re-
spective group conditional on the patent being cited at
least once. Citations within the same class are excluded.

Table E.40: Average Generality Index (1990-2019)
Keyword Science WIPO USPTO

1 digit 0.76 0.73 0.72 0.68
3 digit 0.91 0.87 0.87 0.84
4 digit 0.96 0.95 0.94 0.93

Notes: The generality index is defined as share of cita-
tions to patents in di�erent CPC classes at di�erent ag-
gregation levels (see A.2). Citations within the same class
are excluded.
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Table E.41: Average Number of Citing CPC Classes (1990-2019)
Keyword Science WIPO USPTO

1 digit 2.15 1.83 1.82 1.68
3 digit 5.18 4.14 4.39 3.91
4 digit 8.90 7.41 8.04 7.13

Notes: This table shows the numbers of di�erent CPC
classes making a citation to an average patent of the re-
spective group. Citations within the same class are ex-
cluded.

Figure E.11: Average Number of Classes Citing AI
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(a) Subset of cited patents
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(b) Subset of cited patents (z-score scaled)

Notes: The z-scored value equals the level of the generality index minus its average across the four
approaches divided by the standard deviation for each year.

E.3.3. Complementarity

Table E.42: Average Number of 1-, 3- and 4-digit CPC Classes per Patent
Keyword Science WIPO USPTO

1 digit 1.39 1.40 1.36 1.27
3 digit 1.61 1.64 1.64 1.43
4 digit 1.88 1.97 2.05 1.64

Note: The table shows the average of annual average
number of technology classes by 1-, 3- or 4-digit CPC per
patent.
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Figure E.12: Patent-Level Diversity - Average Technology Classes
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(a) Average number of 1-digit CPC

E.4. Generality of AI Descendants
In this section, we report additional results for the wide-ranging usefulness of techno-
logical descendants of AI, i.e. those patents that cite an AI patent but are not AI
themselves. This serves as an additional indicator of the wide spread of AI in a range
of di�erent products and processes. The results confirm the persistence of the ranking,
indicating the highest generality of keyword patents across di�erent indicators.

Table E.43: Average Generality Index: AI Descendants
Citing Keyword Citing Science Citing WIPO Citing USPTO

1 digit 0.74 0.73 0.72 0.72
3 digit 0.89 0.87 0.87 0.88
4 digit 0.96 0.95 0.95 0.95

Notes: Generality is measured as G = 1 ≠
q

(s2) with s as share of citations to patents
in di�erent CPC classes at di�erent aggregation levels. Citations within the same class are
excluded.

Table E.44: Average Number of Citing CPC Classes: AI Descendants
Citing Keyword Citing Science Citing WIPO Citing USPTO

1 digit 1.32 1.15 1.23 1.16
3 digit 2.75 2.27 2.57 2.33
4 digit 4.82 3.99 4.57 4.06

Notes: This table shows the number of di�erent CPC classes making a citation to an average
patent of the respective group. Citations within the same class are excluded.
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Table E.45: Average Number of Citing CPC Classes (Cited): AI Descendants
Citing Keyword Citing Science Citing WIPO Citing USPTO

1 digit 2.35 2.17 2.24 2.17
3 digit 4.60 4.04 4.39 4.10
4 digit 7.51 6.60 7.29 6.63

Notes: The table shows the numbers of di�erent CPC classes making a citation to an average
patent of the respective group that receives at least one citation. Citations within the same
class are excluded.

Table E.46: Average Citation Lags by Group of AI Citing Patents
Period Citing Keyword Citing Science Citing WIPO Citing USPTO
1990-1999 12.79 12.59 12.66 12.47
2000-2009 8.95 9.03 9.01 8.84
2010-2019 4.30 4.29 4.22 4.28

Notes: This table shows the average number of years it takes until a patent in the sample is
cited. The average number of years is lower during the more recent decade as the maximal
time lag is truncated since our data ends in 2019. Note that the group of AI citing includes
all patents that cite AI but are not identified as AI by the respective approach.
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