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Abstract

We present a discrete choice, random utility model and a new estimation tech-

nique for analyzing consumer demand for large numbers of products. We allow the

consumer to purchase multiple units of any product and to purchase multiple prod-

ucts at once (think of a consumer selecting a bundle of goods in a supermarket). In

our model each product has an associated unobservable vector of attributes from

which the consumer derives utility. Our model allows for heterogeneous utility

functions across consumers, complex patterns of substitution and complementarity

across products, and nonlinear price e↵ects. The dimension of the attribute space

is, by assumption, much smaller than the number of products, which e↵ectively

reduces the size of the consumption space and simplifies estimation. Nonetheless,

because the number of bundles available is massive, a new estimation technique,

which is based on the practice of negative sampling in machine learning, is needed

to sidestep an intractable likelihood function. We prove consistency of our estima-

tor, validate the consistency result through simulation exercises, and estimate our

model using supermarket scanner data.
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1 Introduction

Knowing what consumers will purchase in di↵erent circumstances is crucial for answering

many economic and business questions. What is often needed is not merely the own-

price elasticity of a single good but rather knowledge of the full demand system of a

large swathe of interrelated products. For instance, a government instituting a tax on

sodas must know the health content of each product into which consumers substitute to

calculate the health e↵ects of the policy. A government instituting a new trade policy

must know the change in demand for each complement good and substitute good for

the products directly a↵ected by the policy in order to calculate changes in welfare. A

firm entering a new market must understand how each of its products interacts with the

existing products in the market in order to know which goods to introduce and at which

prices.

This crucial knowledge of consumer behavior can be di�cult to acquire because of the

enormous number of interconnected goods in any modern economy. This di�culty can

be overcome by (i) using institutional knowledge to handpick a small subset of goods to

analyze and (ii) aggregating many products into a few broad categories of goods.1 Relying

on these procedures, economists often analyze demand systems containing only a small

number of goods.2,3 While economic theory provides conditions under which this focused

analysis is justified it is generally recognized that these conditions are very stringent.4 In

principle the demand for any good is a function of the prices of all other goods. Thus,

when the analysis is confined to only a few goods it seems likely that omitted variable

bias is introduced from excluding relevant prices or aggregating the prices of goods into

1Many studies reduce the number of goods by focusing on a few “inside” goods and treating all other
goods as a single “outside” good. This approach is best understood as an instance of procedure (ii). In
particular, the restrictive assumptions required to justify (ii) need to hold for the outside good.

2For instance, Lewbel and Pendakur (2009) estimate a demand system with 9 goods, Hausman and
Newey (2016) provide bounds on the equivalent variation of a price change with unrestricted preference
heterogeneity with an application containing 2 goods (gasoline and an “other” good), Blundell et al.
(2017) show how to impose a consequence of economic theory onto a quantile regression estimator and
provide an application with 2 goods (again, gasoline and an “other” good), and Kitamura and Stoye
(2018) test household expenditure data for consistency with a non-parametric random utility model using
between 3 and 5 goods. An exception is discrete choice models where goods have observable attributes.
See the “Related approaches” section below.

3One reason for this fact is that many models and estimation techniques used by economists become
untenable when the number of goods is too large. See Berry et al. (2014) and Keane (2015) for a
discussion of some of the issues.

4See Deaton and Muellbauer (1980), Blundell and Robin (2000), and, for a more recent discussion,
see Chernozhukov et al. (2019).
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a single price index. As our approach is suitable for estimating large demand systems we

believe it has the potential to greatly reduce this omitted variable bias.

We present a tractable random utility model and estimation method, inspired by

recent innovations in machine learning, which is suitable for analyzing panel datasets with

thousands of products and hundreds of thousands of purchases (for instance, supermarket

scanner data). In our model each product has an associated unobservable (to the analyst)

vector of attributes. The consumer purchases a bundle of products to maximize utility

which is derived from the attributes of the products. The attribute space is assumed to

be much smaller than the number of products. This greatly diminishes the e↵ective size

of the consumption space and greatly reduces the number of parameters which need to

be estimated. Despite this parsimony, we demonstrate that our model has flexible price

e↵ects, and in particular, goods can be substitutes, complements, or independent.

The parameters of our model cannot be estimated by straightforward maximum like-

lihood methods because the likelihood function is prohibitively di�cult to calculate for

applications where the number of alternatives is large (note that in our model an alter-

native is a bundle of goods). This intractability motivates our introduction of a new

estimation technique, inspired by the idea of negative sampling from machine learning,

which is suitable for estimating parameters in a discrete choice model with a large choice

space. The basic idea of the technique is to perform maximum likelihood estimation con-

ditioning on simulated random variables. Through carefully designing the distribution of

the simulated random variables we are able to obtain a tractable conditional likelihood

function even though the original likelihood function is intractable.

1.1 Our model

Suppose there are L goods and each good `  L has some unobserved vector of at-

tributes ↵` 2 RK . We assemble the L attribute vectors into an attribute matrix

A = [↵1, . . . ,↵K ]. The consumer purchases a bundle of goods given by a vector

q = [q1, . . . , qL] where each q` is a non-negative integer. For instance q = [1, 0, 3] denotes

a bundle containing one unit of good 1, zero units of good 2, and three of good 3. Each

bundle q has an associated vector of attributes given by Aq =
PL

`=1 q`↵`. Each good

has a price p` which is assembled into a price vector p = [p1, . . . , pL]. The utility function

of a consumer is a function of the attributes consumed, Aq, the amount of money spent,
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p0q, and a random shock, and is given by

U(q,p) = b0Aq � q0A0Aq � dp0q + "q (1)

where b 2 RK , A, and d > 0 are parameters and "q is an i.i.d. standard Gumbel shock.

While this utility function is quasilinear the utility function we present in the main paper

can have more flexible income e↵ects. In our application b and d are consumer specific

while the attributes in A are constant across consumers.

The utility function in equation (1), because of the Gumbel shocks, is an instance of

a multinomial logit model where an alternative is a bundle of goods in contrast to the

usual setup where an alternative would be a single unit of a single good. Given the well-

known results on the multinomial logit model (see McFadden (1974)) it is not surprising

that the probability with which the consumer with the utility function in equation (1)

purchases bundle q when prices are p is given by

f(q|p) =
exp(U(q,p))P
q̃ exp(U(q̃,p))

(2)

where the summands iterates over all consumption bundles. The multinomial logit model

is known to display unrealistic price e↵ects in the usual case when each alternative is

a single unit of a single good. However, this criticism no longer applies when each

alternative is a consumption bundle (even when utility is quasilinear). The reason is that

a price change of a particular good impacts the desirability of all bundles in which the

good appears. Thus a price change for a single product alters the desirability of many

bundles. This means that the impact of the price change for other products can display

complicated patterns; in particular, it could depend on the extent to which they are

co-purchased with the product whose price has changed.

As a simple example of our model, consider a customer in a teashop, selecting a

bundle to consume. Three goods are on o↵er: tea, biscuits, and cake. Unlike our general

model (which allows for the consumption of multiple units of each good), let us suppose

that a maximum of just one unit of each good can be consumed. This gives rise to

23 = 8 bundles which are listed in Table 1. Formally, each bundle can be represented by

a vector q 2 {0, 1}3. Let us say that our tearoom is o↵ering ‘warm’, ‘sweet’ and ‘filling’

consumption with its products, with each good delivering these attributes in di↵erent
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Bundles tea biscuits cake net demand Comments

utility probability

nothing 0 0 0 0.0 0% no utility
pot of tea 1 0 0 0.3 0% just a drink
biscuits 0 1 0 2.8 1% slightly desirable
slice of cake 0 0 1 5.7 26% pretty good
tea and biscuits 1 1 0 4.0 5% somewhat desirable
tea and cake 1 0 1 6.1 36% just the ticket
cake and biscuits 0 1 1 4.3 7% thirsty work
high tea 1 1 1 5.7 25% a bit much

Table 1: List of bundles and their demand probabilities.

quantities. This is captured by the matrix

A =

2

4
1 0 0.5

�0.5 1 1.1
0 1.2 0.8

3

5 .

where the first column is the attribute vector for tea, the second for biscuits, and the third

for cake. We allow a good to have a negative amount of some attribute; in particular,

tea has 1 unit of the ‘warm’ attribute, nothing of ‘filling’, and -0.5 units of ‘sweet’.

The net utilities reported in Table 1 are calculated using equation (1), with b =

(5, 5, 1), d = 1, and the price of each good set at 1 (so p = (1, 1, 1)). Net utilities in turn

give rise to bundle-demand probabilities (via (2)). From these, the demand for goods can

be calculated. For example, as biscuits appear in exactly the bundles ‘Biscuits’ (prob.

.01), ‘Tea and Biscuits’ (.05), ‘Cake and Biscuits’ (.07), and ‘High Tea’ (.25), its expected

demand is 0.01+0.05+0.07+0.25 = 0.38.

1.2 Our estimation technique

Maximum likelihood methods are not suitable for estimating the parameters in our model

when the number of goods is large. The reason is that the denominator in the probability

mass function given by (2) has an infinite sum which is impossible to approximate quickly

when there are too many goods. We introduce an alternative way to estimate parameters.

To make the discussion more concrete let c(p) be a random consumption bundle with

probability mass function f(q|p) given by (2).

The problem with using maximum likelihood estimation is that the support of c(p)

is too large, that is, there are too many possible bundles. Our solution is to define a new
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random variable S so that the distribution of c(p) conditional on S has a much smaller

support. More specifically, let S(q) be a random set containing a small list of bundles,

one of which is the bundle q. Intuitively, S(q) is giving a hint about what bundle it was

passed. Now, let S = S(c(p)) and let f(q|Q,p) be the probability which the consumer

with the utility function given by (1) purchases q conditional on S = Q. Provided S(q)

satisfies certain conditions we show

f(q|Q,p) =
exp(U(q,p))P
q̃2Q exp(U(q̃,p))

(3)

Note that the denominator in (3) only has as many terms as are contained in the set Q.

Thus, provided S(q) is constructed in a way so that it outputs smaller sets Q we are

guaranteed a tractable conditional probability mass function and so conditional maximum

likelihood estimation is also tractable. We show in the body of the paper that this

conditional maximum likelihood estimator is consistent.

The idea behind this estimation technique comes from negative sampling introduced

by Mikolov et al. (2013). They recommend using a probability mass function similar to

(3) to estimate parameters but do not provide much in the way of theoretical justification

for the approach. In contrast, we provide conditions under which the probability mass

function of c(p) conditional on S is given by equation (3) and show that maximizing the

corresponding likelihood function yields a consistent estimator of the parameters.

1.3 Related approaches

There is a large literature on estimating demand in economics. See the reviews of Barnett

and Serletis (2008) on demand for continuous commodities, Greene (2015) for discrete

choice models using panel data, and Berry and Haile (2021) and Gandhi and Nevo (2021)

for discrete choice models used in industrial organization.

While the continuous commodities literature almost exclusively analyzes small num-

bers of goods the discrete choice literature has tackled larger demand systems by as-

suming that consumers derive utility from the attributes of products. Suppose there

are L products and each product analyzed has an associated K vector of observable at-

tributes. Assuming that utility is derived from attributes and provided K is small the

consumption space is e↵ectively K dimensional instead of L. Examples where utility is

derived from observable attributes are Berry et al. (1995), Hendel (1999), Nevo (2001),
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Berry et al. (2004), and Dubois et al. (2020). What distinguishes our model from this

literature is that in our model the attributes of products are unobserved.5 This means

that we have more parameters to estimate which, on the one hand makes the estimation

more challenging but on the other hand introduces greater flexibility into our model.

Machine learning techniques are designed for large scale applications. Thus, it seems

natural to look at machine learning for a way to estimate large demand systems. The

potential that machine learning holds for economics is discussed in Varian (2014), Mul-

lainathan and Spiess (2017), and Athey and Imbens (2019). Indeed, machine learning

techniques have been used to estimate demand in Bajari et al. (2015), Wan et al. (2017),

and Ruiz et al. (2020). Bajari et al. (2015) compare out-of-sample fit of predicted demand

between di↵erent machine learning methods (they also fit and compare a simple linear

and logistic regression as well). Wan et al. (2017) estimate a simple three step model of

consumer behavior where each consumer first decides which categories of goods to buy,

then decides which product to buy in a category, and finally decides on the quantity

of the product. Ruiz et al. (2020) build and estimate a model inspired by the machine

learning sub-field of natural language processing. Their model assumes that a consumer

constructs a consumption bundle sequentially. That is, products are added to the con-

sumption bundle one-by-one to maximize the random utility of the currently assembled

bundle and not the utility of the actual bundle to be purchased (they also present an

extension where the consumer can think one item ahead). What distinguishes our ap-

proach from these studies is our tight connection to standard economic theory. We use

a random utility model built on the assumption that utility is derived from the bundle

actually purchased. Because our consumers are utility maximizers we can credibly use

our model to discuss welfare issues.

1.4 Remainder of the paper

In the next Section we set out the model in full, discuss parameter identification, present

some observations and comparative statics results regarding price complementarity, and

outline our approach to the price endogeneity problem. In Section 3 we provide formal

results on consistent estimation. Section 4 develops a computationally e↵ective estima-

tion algorithm based on these results, and simulates its properties. The algorithm is

5It is easy to extend our model to include both observed and unobserved attributes.
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applied using real data from the market research company, DunnHumby, in Section 5.

2 A Random Utility Model

In this section we introduce our random utility model which is suitable for analyzing

demand for consumption bundles.

2.1 The Model Defined

Let N0 = {0, 1, 2, 3, . . .} denote the non-negative integers. There are L goods (call them

good 1, good 2, . . ., good L) which can only be consumed in non-negative integer quan-

tities. A vector q = (q1, q2, . . . , qL) 2 NL
0 is a consumption bundle where q` 2 N0 is the

amount of good ` consumed. Each good, ` 2 {1, . . . , L}, has an associated unobservable

K-vector of attributes ↵` 2 RK where K  L. The L attribute vectors are placed into

a K ⇥ L matrix A = [↵1, . . . ,↵L] called an attribute matrix.

Each good ` has a price p` which we place into a price vector p = [p1, . . . , pL] 2 RL
++.

The deterministic utility (a random shock will be added later) of bundle q when prices

are p takes the following quadratic form

U(q,p) = b0Aq � q0A0Aq| {z }
utility from attributes

� d1p
0q � d2(p

0q)2 � 2d3(A
0
1q)(p

0q)| {z }
dis-utility from expenditure

(4)

where A is the K ⇥ L attribute matrix, A1 2 RK
+ is the first row of A, b 2 RK , and

d1 > 0, d2 � 0, and d3 � 0. A utility function satisfying (4) is called a standard quadratic

in unobserved attributes (standard Qua) utility function.6

A consumer with a standard Qua utility function wants to purchase consumption

bundles with good attributes at a reasonable price. In other words, they like bundles

with attractive attributes (captured by the “utility from attributes” term) and dislike

spending money (captured by the “dis-utility from expenditure” term).

Inspection of the “dis-utility from expenditure” term in equation (4) reveals that, in

several ways, the standard Qua utility function gives the first unobserved attribute, A1, a

special role. First, only the first attribute even enters this “dis-utility from expenditure”

term. Second, by assuming that A1 2 RK
+ we are requiring every good to have a non-

6Throughout we maintain the convention that ↵` is column ` of A while Ak is row k of A.
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negative quantity of attribute 1.7 Indeed, we allow goods to possess negative quantities

of any attribute other than attribute 1. For instance, the attribute vector for bananas

might be ↵bananas = [3,�12,�5.3]. Although the special role given to attribute 1 may

seem restrictive this is done without loss of generality in a sense discussed in Section 2.2

and made formal in Proposition 2 below.

The utility function in equation (4) is quasi-linear when d2 = d3 = 0. While quasi-

linear utility may be sensible in some instances there may be cases where it is important

to penalize large purchases (which can be captured by the quadratic term d2(p0q)2) and

there may be cases where the dis-utility of expenditure is product specific (which can be

captured by the term 2d3(A
0
1q)(p

0q)).8

We use our model to analyze supermarket scanner data which has repeated purchases

for each consumer. We assume A is constant across consumers but allow b, d1, d2, and

d3 to vary by consumer. In much of the theoretical analysis we treat b, d1, d2, and d3 as

constants and so these theoretical results pertain to the behavior of a single consumer

with constant parameter values.

In our model consumers are random utility maximizers and so purchase consumption

bundles to maximize

Ũ(q,p) = U(q,p) + "q. (5)

where U is a standard Qua utility function and "q is an iid standard Gumbel shock. The

random utility function Ũ is called a standard Qua random utility function. Our model

of the individual consumer is therefore a standard multinomial logit model where each

alternative is a consumption bundle. The following proposition reports the probabilities

with which our consumer purchases di↵erent bundles.

Proposition 1. Let Ũ be a standard Qua random utility function, let p 2 RL
++, and let

7The requirement that A1 � 0 is essential for ensuring that the utility function is strictly decreasing
in expenditure. In fact, the restrictions imposed on the parameters ensure that U is strictly concave
in attributes (i.e. in Aq) and concave and decreasing in expenditure. These properties are needed for
Proposition 1. In particular, without these restrictions we cannot ensure that the denominator in (7) is
not 1.

8When utility is quasi-linear (and so d2 = d3 = 0) then, using standard arguments, the utility
function in (4) can be derived from a more primitive model wherein price does not directly enter the
utility function but is incorporated through a budget constraint. This derivation does not work when
d2 > 0 or d3 > 0 and so, in general, the standard Qua utility function takes as a primitive assumption that
the consumer loses utility from spending money. This type of model, called an expenditure augmented
utility function, is introduced and studied in Deb et al. (Forthcoming).
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f(·|p) : NL
0 ! [0, 1] be defined by

f(q|p) = P

 
Ũ(q,p) � sup

q̃2NL
0

Ũ(q̃,p)

!
, for all q 2 NL

0 (6)

Then,

f(q|p) =
exp(U(q,p))P

q̃2NL
0
exp(U(q̃,p))

(7)

The probability mass function f(q|p) defined in (6) is the probability with which the

consumer purchases q when prices are p. Equation (7) is not surprising given the classic

results on the multinomial logit model (see McFadden (1974)). In fact, the only di�culty

in the proof is showing that the denominator in (7) is finite.

2.2 A Seemingly More General Model

There are two features of the standard Qua utility function which appear restrictive but

turn out not to be. First, letting [a1, . . . , aK ] = Aq denote the attribute vector obtained

by purchasing q, we see that the quadratic expression in (4), namely q0A0Aq =
PK

k=1 a
2
k,

does not allow di↵erent attributes to interact multiplicatively. One might think that

the more general quadratic expression q0A0BAq =
PK

k=1

PK
k0=1 Bk,k0akak0 is preferable

(here B is a K ⇥K positive definite matrix with entries Bk,k0). Second, the expression

2d3(A
0
1q)(p

0q) appears to give attribute 1 a special and unjustified role. One might think

it preferable to replace this term with �2(d̃
0
Aq)(p0q) as it does not privilege any of the

attributes. It turns out that both of these seeming improvements to the standard Qua

model result in exactly the same class of utility functions.

Specifically, the following class of utility function, although incorporating many more

parameters, contains exactly the same utility functions (and thus can describe the same

behavior) as the standard Qua class. This class, whose members are called general

quadratic in unobserved attributes (general Qua) utility functions, is defined by

U(q,p) = b0Aq � q0A0BAq| {z }
utility from attributes

� d1p
0q � d2(p

0q)2 � 2(d̃
0
Aq)(p0q)| {z }

dis-utility from expenditure

where A is a K ⇥ L attributes matrix, b 2 RK , B is a K ⇥K positive definite matrix,

d1 > 0, d2 � 0, and d̃ 2 RK where d̃ is restricted so that d̃
0
Aq � 0 for all q 2 N0.9 The

9The restrictions placed on the parameters (such as d̃
0
Aq � 0) ensure that U is strictly concave in

attributes (i.e. Aq) and concave and strictly decreasing in expenditure. As mentioned earlier, these
properties are needed to ensure that Proposition 1 holds. Without them, we cannot ensure that the
denominator in (7) is finite.
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general Qua class of utility functions appears to improve on the standard Qua class in

the ways suggested earlier and yet the following proposition shows that the two classes

are the same.

Proposition 2. For every general Qua utility function U with a K ⇥L attribute matrix

A there exists a standard Qua utility function Ũ which also has a K⇥L attribute matrix

Ã so that

U(q,p) = Ũ(q,p), for all q 2 NL
0 and all p 2 RL

++

The message of Proposition 2 is that every general Qua utility function is also a

standard Qua utility function. Of course, the converse is also true. In the rest of the

paper we focus our analysis on consumers with standard Qua utility functions but, given

Proposition 2, we could carry out all our analysis on consumer’s with general Qua utility

functions and none of the results would change.

2.3 Identification

We discuss identification of the parameters of our model given consumption data. Let

✓ = [A, b, d1, d2, d3] denote a list of the parameters of the standard Qua model. Let ⇥

denote all such lists where we assume that there are always K unobserved attributes (and

so, A is always a K ⇥ L matrix.). Let U(·;✓) denote the standard Qua utility function

with parameter values ✓. Let f(q|p;✓) denote the stochastic choice function generated

by U(·;✓) in the sense of (6).

Proposition 3. Define a function  with domain ⇥ by

 ([A, b, d1, d2, d3]) = [A0A,A0b, d1, d2, d3A1] (8)

where A1 is the first row of A. Let ✓, ✓̃ 2 ⇥ and let E ✓ RL
++ be a non-empty open set.

The following are equivalent.

1. f(q|p;✓) = f(q|p; ✓̃), for all q 2 NL
0 and all p 2 E.

2. U(q,p;✓) = U(q,p; ✓̃), for all q 2 NL
0 and all p 2 E.

3.  (✓) =  (✓̃).

Proposition 3 says that two parameter vectors ✓, ✓̃ 2 ⇥ are empirically indistinguish-

able if and only if  (✓) =  (✓̃).
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2.4 Interpreting Attribute Parameters

From Proposition 3 it is clear that the bulk of the content of the attribute matrix A

which can be learned from consumption data is A0A. In other words, all we can learn

are the dot product terms ↵0
`↵j for each `, j 2 {1, . . . , L}. How should we interpret these

dot products? To answer this, suppose that c(p) is a random consumption bundle in NL
0

with distribution f(q|p) given by (7). Let ` and j be two distinct goods of interest. Let

E`,j be the event that the consumer purchases a positive quantity of both goods ` and

j, let E` be the event that the consumer purchases a positive quantity of good ` and no

units of good j and let E0 be the event that the consumer purchases no units of good

` and no units of good j. It is easy to see, using equation (7), that P (E`,j)/P (E`) is

strictly decreasing in ↵0
`↵j while P (E`)/P (E0) is una↵ected by the value of ↵0

`↵j. In

other words, ceteris paribus lower values of ↵0
`↵j mean that a consumer is more likely to

co-purchase goods ` and j rather than purchasing only ` or only j. On the other hand,

higher values of ↵0
`↵j do not make it any more or less likely that a consumer purchases

some of good ` (and no good j) compared to purchasing no units of good `.

2.5 Price E↵ects

Here we consider the price e↵ects for an individual consumer with a standard Qua random

utility function. Our model of the individual consumer is essentially an instance of a

multinomial logit model where alternatives are bundles. The multinomial logit model is

commonly believed to overly restrict price e↵ects. While this point seems incontrovertible

when a consumer can only purchase a single unit of a single good we shall show that the

price e↵ects in our model are more flexible.

We begin by reiterating the point that price e↵ects in the logit model are very re-

stricted when the consumer may only purchase a single unit of a single product. So,

consider a consumer with a standard Qua random utility function with quasilinear util-

ity (so d2 = d3 = 0) and suppose that the consumer can only purchase, at most, one

unit of a single product. Fix some price vector p 2 RL
++ and, for each `, let ⇡` be the

probability with which the consumer purchases good `. Under these assumptions it is

easy to show
@⇡j
@p`

= d1⇡j⇡`, for all j 6= ` (9)

The price e↵ects described by equation (9) are indeed very restricted. In particular,
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all goods are substitutes and the intensity of substitution is determined by the single

parameter d1 as well as the probability of consuming each good.

The following proposition derives price-e↵ects when the consumer is not restricted to

purchasing a single unit of a single good.

Proposition 4. Let c(p) = [c1(p), c2(p), . . . , cL(p)] be a random consumption bundle

whose probability mass function f(q|p) satisfies (7) where U is a standard Qua utility

function with d2 = d3 = 0. Then,

@pE[c(p)] = �d1 Var

⇣
c(p)

⌘
(10)

Let us rewrite equation (10) in a way which is more comparable with (9). To this

end, for each `, let ⇡` = E[c`(p)] and let ⇡j,` = E[cj(p)c`(p)]. Now, equation (10) implies

@⇡j
@p`

= d1⇡j⇡` � d1⇡j,`, for all j 6= ` (11)

There is a very intuitive story behind the price e↵ects described by (11). A rise in the

price of good ` makes every bundle which contains some units of good ` more expensive

and so decreases their probability of being purchased. On the other hand, every bundle

in which no units of ` are consumed is relatively more attractive. As a result, whether

the demand for good j rises or falls depends on whether it is commonly purchased with

good ` or not. That is, the crucial question for determining the direction of price e↵ects is

whether j often appears alongside ` or not. This tendency to be co-purchased is captured

by the ⇡j,` expression.10

We mention two ways in which the price e↵ects described by our model in equation

(11) are more flexible than those of the single-product single-unit model in (9). First, in

(11) goods may complements (just consider a large ⇡j,` term); a property ruled out by

equation (9). Second, in (11) we may have ⇡1 = ⇡2 without requiring @⇡1/@p3 = @⇡2/@p3.

In other words, the demand for two di↵erent goods which have similar probabilities of

being purchased needn’t have the same response to the change in the price of some third

good. Again, this is ruled out by (9).

10Gentzkow (2007) warns that inferring two good are complements based on the fact that they are
often co-purchased in a dataset with multiple consumers can be highly problematic. The problem is that
the observation that two goods are often either purchased together or not at all can both be explained
either as complementarity or as a particular type of preference heterogeneity. This problem clearly a↵ects
the analysis of cross sectional data but, as we are considering the demand of a single consumer, there is
no danger of confusing preference heterogeneity with complementarity. Recall that our application uses
panel data where we allow the parameters b, d1, d2 and d3 to vary by consumer.
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Note that Proposition 4 requires d2 = d3 = 0 which is an assumption we do not

impose in our empirical application. The following proposition describes price e↵ects in

the more general case.

Proposition 5. Let c(p) = [c1(p), c2(p), . . . , cL(p)] be a random vector whose probability

mass function f(q|p) satisfies (7) where U is a standard Qua function. Then,

@pE[c(p)] = Cov

⇣
c(p), @pU(c(p),p)

⌘
(12)

Proposition 4 is a straightforward corollary of Proposition 5. We have argued that

the price e↵ects described by (10) are not overly restricted. The price e↵ects described

by (12) are of course even more flexible and when incorporating preference heterogeneity,

as we do in the application, the price e↵ects will be greater still. One can get a deeper

understanding of the price e↵ects implied by (12) by plugging in the definition of U(c,p)

which yields an expression with the parameters d1, d2, d3, and A1.

2.6 Price Endogeneity and Period Dummies

The demand function of a consumer can change over time due to changes in preferences

(for instance, in response to an advertising campaign) or due to changes in the quality of

goods (for instance, in-season strawberries are tastier than out-of-season strawberries).

It is important to account for these shifts in the demand function because these shifts

can make it hard to distinguish whether demand for a good has changed due to price

movements or if prices are moving in response to a change in the demand function. This

lack of clarity in the direction of causation between price and demand can confound

the estimation of preference parameters. To tackle this problem we explicitly model

preference / quality change.

Similar to the method employed in Ruiz et al. (2020) our approach is to add period

specific dummy variables to the utility function. These dummy variables shift utility

each period (in our application a period is 4 weeks) and so they can capture shifts in

utility arising from taste change or quality change. More concretely, suppose we have

some purchasing data from a consumer for time periods between T0 and T1. We partition

the interval (T0, T1] ✓ R into T ⇤ sub-intervals of equal length, ⌧1, . . . , ⌧T ⇤ (so each ⌧k is a

interval in R) and assume that when the consumer goes shopping at time period t 2 ⌧k
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they evaluate bundles according to the utility function Ũ⌧k defined by

Ũ⌧j(q,p) = b0⌧jAq + Ũ(q,p) (13)

where Ũ is the standard Qua random utility function of equation (5) while b⌧j 2 RK is

a period specific term which shifts the utility of the attributes.

In equation (13) entry number k of b⌧j represents a shift to the utility received from

attribute k. Note that we are assuming that all changes to preferences and quality can be

represented by changes to the desirability of the latent attributes. For instance, perhaps

attribute k correlates highly with fruits which are in-season in the summer. If this is the

case then our model can pick up changes in the quality of these fruits by letting entry k

of b⌧j take large values for ⌧j in the summer and otherwise b⌧j takes smaller values.

Recall that we allow the parameters b and d1, d2, and d3 to vary by consumer in our

empirical section. By contrast, we envisage that the period-specific dummies b⌧j are held

constant across consumers.

3 Estimation

Although our application uses panel data from many consumer we shall first consider how

to estimate the parameters of our model given time series data from a single consumer.

For now, we also assume that there are no period-specific shifts to the utility function

(as in Equation (13)). We proceed in this way to keep the exposition and notation

simple. Our method generalizes to the panel data with period-specific dummy context in

a straightforward manner. When dealing with panel data we allow that each consumer

has individual specific parameters b, d1, d2 and d3. Thus, only the attribute matrix A is

assumed common to all consumers.11

We cannot and do not attempt to estimate parameters by maximizing the conditional

log likelihood of the data. The reason is that our underlying probability mass function

11This could lead to an incidental parameters problem if the number of consumers in the dataset is
much larger than the number of observations per consumer. That is, as each new consumer in the dataset
adds an additional K + 3 parameters to be estimated, a data set with too many consumers relative to
observations per consumer can involve too many parameters to be estimated reliably. Recently, Dubois
et al. (2020) have estimated demand for soda using panel data assuming, in a similar fashion to our
approach, consumer-specific parameters. They provide evidence that the incidental parameters problem
does not hinder the quality of their estimates due to the fact that they have a large number of observations
per consumer.
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(7) is intractable. Specifically, the denominator in (7) has too many terms.12 Instead,

we define a random function S, called a signal function, which assists our estimation.

Specifically, we construct the signal function in a way so that probability mass function

of demand conditional on S takes a particularly tractable form.

To make our discussion more concrete suppose that c(p) is a random consumption

bundle with a probability mass function f(q|p) given by (7). Let S(q) be a random set

which contains q (along with other bundles). Intuitively, S(q) is providing a (smallish)

list of bundles, one of which is the correct bundle while the rest are imposters. Now,

provided S satisfies certain conditions, the probability mass function of c(p) conditional

on S(c(p)) will be the same as the probability mass function of the consumer who was

constrained to select from a bundle in S(c(p)). In other words, implementing the signal

function method allows us to treat the consumption space as if it is S(c(p)) instead of

the much larger NL
0 .

When designing S there is a trade-o↵ between tractability and e�ciency. Intuitively,

as more information is passed through S(c(p)) the estimator becomes less e�cient yet

easier to calculate. It is well known that conditional MLE is generally less e�cient than

unconditional MLE and that the greater the set of conditional variables the less e�cient

is the estimator (see Property 7.18 of maximum likelihood estimators in Section 7.5.3 of

Gourieroux and Monfort (1995)). The same idea is at work with the signal function. An

S(c(p)) which gives too much information is akin to performing MLE while conditioning

on too many variables.

It may be instructive to consider two extreme cases of the signal function. First,

suppose for all q we have S(q) = NL
0 . Now, the signal function passes no information.

Unconditional MLE and MLE conditional on this signal function are equivalent and so

there is no loss of e�ciency. On the other hand, the conditional likelihood is just as

intractable and so there is nothing lost and nothing gained.

12The intractability of our log likelihood function seems inevitable in our context. That is, we do
not believe there is some reasonable alternative model which could be used to estimate demand in our
context whose estimation could be accomplished via maximizing a conditional log likelihood function.
The reason is that we want to allow consumers to be able to purchase arbitrary bundles. When allowing
bundling and even making the restrictive assumption that at most one unit of each good can be purchased
one is left with 2L possible bundles which can be purchased. It seems unlikely that there is an approach
for calculating the probability of purchasing one of these 2L bundles without explicitly calculating the
utility of all the bundles. But, for a full-scale implementation of our method (where L can be over 1,000)
this is a non-starter. To be overly dramatic, there are fewer than 284 atoms in the observable universe.
Thus we’re dealing with numbers which are more than “astronomically” large.
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At the other extreme we can specify S(q) = {q} for all q. Now, the probability mass

function of c(p) conditional on S(c(p)) is particularly tractable. In fact, it is just

g(q|q0) =

(
1, if q = q0

0, else

This function is easy to calculate but useless for estimating the parameters of our model

(the parameters don’t even enter the function).

The point of these extreme examples is to emphasize the trade-o↵ inherent in design-

ing S. If S passes too much information one losses e�ciency (even to the point of losing

consistency) and if S doesn’t pass enough information than the log-likelihood function

will remain intractable.

3.1 Signal Functions

We have just talked at length in intuitive terms about signal functions. Here we define

the concept formally.

Definition 1. For each q 2 NL
0 let S(q) be a random subset of NL

0 . S is a signal function

if (i) each realization of S(q) contains q, (ii) for each Q ✓ NL
0 and all q, q̃ 2 Q,

P
⇣
S(q) = Q

⌘
= P

⇣
S(q̃) = Q

⌘
(14)

and (iii) for each q 2 NL
0 there is a countable collection Q̃ consisting of subsets of NL

0

where P
�
S(q) 2 Q̃

�
= 1.

Let c(p) be a random consumption bundle with a probability mass f(q|p) given by

(7), let S be a signal function, and let S ⌘ S(c(p)). Recall that, intuitively speaking,

S is providing a hint as to the true c(p) which was passed to it. That is, S gives a

list of bundles where one of the bundles is the true c(p) bundle while the others are

“impostors”. Item (i) in the definition of the signal function just requires that S include

the true bundle among the impostors. Item (ii) is a condition which ensures that the

probability mass function of c(p) conditional on S is actually the same as the probability

mass function of the consumer who is required to select a bundle form the choice set S.

In other words, item (ii) is what ensures that conditioning on the signal function actually

produces tractable probability mass functions. Finally, item (iii) in the definition of the

signal function is a technical condition which ensures S is measurable.
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We have claimed that signal functions allow us to make the conditional probability

mass function of demand more tractable. The following proposition will make this claim

concrete. First, we require a definition. For a signal function S the support of S, denoted

Q, is defined by Q = {Q ✓ NL
0 : 9q 2 NL

0 so that P (Q 2 S(q)) > 0}.

Proposition 6. Let c be a random vector on NL
0 and ⇢ be random vector on RL

++. Let S

be a signal function with support Q and assume S(c) and ⇢ are independent conditional

on c. Let Q ✓ NL
0 and let f(q|Q,p) denote the probability that c = q conditional on

S(c) = Q and ⇢ = p. Now,

f(q|Q,p) = P
⇣
c = q

���c 2 Q,⇢ = p
⌘
, for all Q 2 Q (15)

Consequently, if the probability mass function of c conditional on ⇢, denoted f(q|p),

satisfies (7), then, for all Q 2 Q,

f(q|Q,p) =

8
<

:

exp(U(q,p))P
q̃2Q exp(U(q̃,p))

, for q 2 Q

0, else.

(16)

The punchline of Proposition 6 is that the denominator in (16) is much smaller than

the denominator in (7). Thus, while we must give up hope of calculating likelihoods

based on (7) we can indeed tractably calculate likelihoods using signal functions.

In Section A.1 of the Appendix we provide two conditions on the signal function

which help ensure that conditional maximum likelihood estimation is consistent. A sig-

nal function which satisfies these two conditions is said to be small and distinguishing.

Our consistency result, which we now go on to discuss, relies on S satisfying these two

properties.

3.2 Consistent Estimation

In this subsection we present a consistency theorem for our estimator. We shall introduce

assumptions on the data and on the signal function used which guarantee the consistency

of our conditional maximum likelihood estimator. One point to bear in mind is that we

are presenting our results as they apply to time series data on a single consumer. In our

implementation we in fact have panel data and allow for individual-specific values of b,

d1, d2, and d3. Our consistency result will still apply in this case provided we assume that

the number of observations tends to infinity while the number of consumers stays fixed.
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We now provide notation and assumptions which allow us to present our consistency

theorem.

Suppose we have some data on N consumption bundles purchased by a single con-

sumer and the prices of the products (c1,⇢1), (c2,⇢2), . . . , (cN ,⇢N). Let I 2 N. We also

assume that we have the ability to generate NI signal functions

S1,1, S1,2, . . . , S1,I , S2,1, S2,2, . . . , SN,I

For each n and i let Sn,i = Sn,i(cn). We shall refer to On = [cn,⇢n,Sn,1,Sn,2, . . . ,Sn,I ] as

observation n. We estimate ✓ by maximizing the following log likelihood function.

LN(✓) =
1

NI

NX

n=1

IX

i=1

ln
⇣
f(cn|Si,n,⇢n;✓)

⌘
(17)

where f(cn|Si,n,⇢n;✓) is defined by (16). Let ✓̂N 2 ⇥ satisfy

✓̂N 2 argmax
✓2⇥

LN(✓) (18)

when this argmax exists. From Proposition 3 we know that  (✓) is the only part of ✓

which we can hope to learn about. We provide assumptions under which  (✓̂N) consis-

tently estimates  (✓).

Assumption 1. The observationsO1,O2, . . . are independent and identically distributed.

Further, for each n,

⇢n, Sn,1, Sn,2, . . . , Sn,I

are independent conditional on cn.

Assumption 2. There is a non-empty open set P ✓ RL
++ so that for any non-empty

open set P 0
✓ P we have P (⇢n 2 P

0) > 0 for all n.

Assumption 3. The signal function Sn,i is small and distinguishing for all n and i.

Assumption 4. There exists parameters ✓⇤ = [A⇤, b⇤, d⇤1, d
⇤
2, d

⇤
3] 2 ⇥ so that, for each n,

the consumption bundle cn has conditional probability mass function f(q|p;✓⇤) defined

by (7). That is, f(q|p;✓⇤) = P (cn = q|⇢n = p). Further, A⇤ has rank K.

Assumption 5. For each n, the following moments exist and are finite

E[cnc
0
n], E[⇢n⇢

0
n], E[c0ncn⇢n], and E[c0ncn⇢

0
n⇢n]
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Assumption 1 puts independence restrictions on the data and signal functions. As-

sumption 2 is about the support of the price vectors. Assumption 3 requires that the

signal functions used are small and distinguishing (see Section A.1 of the Appendix).

Assumption 4 requires that the consumption bundles are generated by a random Qua

consumer. Finally, Assumption 5 requires certain moments exist. We now state our

consistency result.

Theorem 1. Suppose assumptions 1-5 hold. Let ✓̂N satisfy (18) when the argmax is

non-empty. Let  be defined by (8). Then,

 (✓̂N)
a.s.
�!  (✓⇤) (19)

Two remarks are in order. First, by Proposition 3, we know that  (✓) is all that we

can hope to learn about ✓. Thus, Theorem 1 shows that our estimator recovers (almost

surely) the features of interest of ✓. Second, while the proof of Theorem 1 is inspired by

the proof of Theorem 2.7 (on consistency without compactness) in Newey and McFadden

(1994), there are two features of our problem which prevent a straightforward application

this result. These features are (i) the parameters in ✓ are not identified (only  (✓) is

identified) and (ii) the objective function in (17) is not concave.13 Thus, our proof has

to adapt the proof in Newey and McFadden (1994) to handle these di�culties.

4 Algorithm design and simulation

Theorem 1 describes a consistent estimator for the parameters of the model. To imple-

ment this, we will need to minimize �LN(✓), which is defined in (17). In this Section we

define an algorithm to do this, and observe its performance on simulated data.

4.1 Computational Considerations

Gradient Descent would be an appropriate numerical algorithm for us, if it were not

for computation constraints. To get around this, we adapt Gradient Descent, making it

suitable for our machines. In particular, at each iteration in the Gradient Descent we

13The objective function would be concave if the utility function U was linear in parameters. In fact,
the transformed parameters  (✓) do enter U linearly and so one might think that this problem can be
solved by transforming the parameter space. The problem is that the image  (⇥) is not convex and so
again Theorem 2.7 would not directly apply.
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approximate the gradient of (17) with respect to the parameters, rather than computing

it exactly, by averaging across only a subset of the observations in our dataset, and not

across all N observations. In the machine learning literature, such a subset is known

as a batch. To exploit processors e�ciently we set batch size equal to a power of two:

in practice, to 210 = 1, 024 observations. Typically, the batch may contain under 1% of

the dataset.

At each step in our Gradient Descent we access a new batch, and for each observation

in the batch we take a new draw from a signal function. We will call such a realization

of a signal function on a datapoint a signal set. We use the small and distinguishing

signal function detailed in the Appendix, configured to produce signal sets of size 100

and quantities of goods no greater than six.

This approach is substantially inspired by the method of negative sampling for word

embeddings outlined in Mikolov et al. (2013). Following that literature, we do not draw

batches independently with replacement from our dataset, but instead we just access

batches sequentially as we run through the dataset. Finally, we record the obtained

gradient and use it in immediately subsequent steps according to the adam algorithm of

Kingma and Ba (2015).

When the whole dataset has been accessed in this way once, we say that an epoch is

completed, and we begin again to pass through our data, generating fresh signal sets for

each revisited batch.

In advance of fitting, we seed all our unconstrained real parameters with indepen-

dent random normals of variance 1/K, and all positive parameters with exponentially-

distributed random variables of mean 1/K.

All this is specified in the code made public at www.github.com/jeremy-large/RUBE.

4.2 Simulation Design

Our algorithm may be described as a form of Stochastic Gradient Descent. Because batch

size is limited by processing power, it is appropriate to do simulations to understand the

algorithm’s small-sample properties. This requires us to simulate from a postulated

model, M , then to fit using this simulated data, and finally to confirm that we rediscover

the parameters of M .
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To this end, we set M to a model previously fitted to our scanner dataset detailed in

Section 5, whose parameters we call ✓⇤. We then simulate bundles drawn from M . This

involves some assumptions:

we hold prices constant at their empirical mean in our data;

we study a single consumer/user;

we set to zero the period-specific dummy terms presented in Section 2.6;

we limit our attention to bundles containing exactly nine separate goods.

Under these assumptions not all parameters of M are identified: for example, in the

absence of price fluctuations we cannot discern d3. Nevertheless, we apply a Metropolis-

Hastings algorithm defined as follows:

1. Draw an initial bundle, q0, uniformly from [0, 1, 2, 3, 4, 5, 6]L subject to having

exactly nine non-zero entries. Set q = q0.

2. Use the small and distinguishing signal function detailed in the Appendix to draw

a minimally small signal set, S(q), of size only 2. So, S(q) = {q, q̃} and contains

both q, and one proposed negative sample, q̃.

Definition 1 implies directly that the proposal distribution, q̃|q, is symmetric in q̃

and q; furthermore this signal function preserves the number of distinct items in

the bundle.

3. Evaluate the utility of q̃, and calculate its di↵erence to the utility of q. The

Metropolis-Hastings acceptance ratio is the exponent of this di↵erence.14

4. If we accept q̃ we set q = q̃, otherwise q is unchanged.

5. Return to 2.

To give better exposure to the ergodic distribution, we wait for 2,500 steps before sam-

pling from this process at point 4. In order to limit autocorrelation, we subsequently

sample only every 50 steps.

14This follows because utilities are logits in our model.
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4.3 Simulation Results

We run two simulations:

a Precise Simulation, with larger than normal batch size of 8,192 and smaller than

normal universe of L = 50. Here we expect to see good performance.

a Commensurate Simulation with a standard batch size of 1,024 and a vocabulary

size of L = 2, 500. Here we expect to learn about performance at scales comparable

to that of our empirical implementation.

Theorem 1 states that when the function  (·) is applied to our fitted parameter values,

we have convergence almost surely to the true parameters. After epoch i, let us call our

fitted parameters ✓̂
i
. Then we will be interested in the timeseries of { (✓̂

i
) : i = 1, 2, ...}.

We expect this to approach the truth,  (✓⇤). However, the incessant addition of fresh

randomness in every epoch, i, will introduce ongoing ergodic perturbations around the

truth.

The function  (·) is defined in (8). Its first term is a symmetric matrix containing

pairwise inner products of the goods’ attribute vectors. The second term contains the

pairwise inner products of the customer’s, b (their ‘embedding’) with the attribute vectors

(‘embeddings’) of the goods. The third and fourth terms are scalars, d1 and d2, governing

the dis-utility of expenditure. We study the timeseries of these items across epochs.

4.3.1 Towards interpreting our simulation results

We began by choosing a model, M . By using the parameters of M , we simulated some

data to test our algorithm. To make this exercise as relevant as possible, the parameters of

M were actually ones fitted to the DunnHumby scanner data, which we describe in detail

in Section 5. To assist in interpretation, we order the DunnHumby goods in decreasing

prevalence; and we pick the most frequent of these goods as the ones to appear in our

simulations. Table 2 describes the top 25 goods.

In studying the two simulations, we will pay particular interest to (A0A)1,1, which,

because it is ↵0
1↵1, is the squared magnitude of the attribute vector for the most common

product, a milk. We also observe ↵0
1↵2 which is the inner product of the vectors of the

top two products here. Finally, ↵0
4↵5 will be of interest, because it is negative: loosely,

following the discussion in Section 2, we may say that shredded cheese and large eggs are
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Product Units Manufacturer code

1 FLUID MILK WHITE ONLY GA 69
2 BANANAS LB 2
3 FLUID MILK WHITE ONLY n/a 69
4 SHREDDED CHEESE OZ 69
5 EGGS - X-LARGE DZ 69
6 MAINSTREAM WHITE BREAD OZ 69
7 SOFT DRINKS 12/18&15PK CAN CAR OZ 1208
8 POTATO CHIPS OZ 544
9 SOFT DRINKS 12/18&15PK CAN CAR OZ 103
10 SFT DRNK 2 LITER BTL CARB INCL LTR 103
11 HAMBURGER BUNS OZ 69
12 MAINSTREAM WHITE BREAD OZ 910
13 SFT DRNK 2 LITER BTL CARB INCL LTR 69
14 SALAD BAR FRESH FRUIT n/a 2
15 STRAWBERRIES OZ 5937
16 SFT DRNK 2 LITER BTL CARB INCL LTR 1208
17 CANDY BARS (SINGLES)(INCLUDING OZ 693
18 FRZN BAGGED VEGETABLES - PLAIN OZ 69
19 SFT DRNK SNGL SRV BTL CARB (EX OZ 103
20 BEERALEMALT LIQUORS OZ 239
21 HOT DOG BUNS OZ 69
22 CIGARETTES PK 539
23 ONIONS SWEET (BULK&BAG) LB 2
24 GRAPES RED LB 2
25 HEAD LETTUCE CT 673

Table 2: The 25 most frequent goods in the DunnHumby dataset after cleaning, in
decreasing order of frequency. The Manufacturer Code is a unique anonymous identifier
of the manufacturer. In simulating our model, we will pay particular interest to (A0A)1,1,
which, because it is ↵1

0↵1, is the magnitude of the embedding vector for the most
common good, at the top of this list, a milk. We also study ↵1

0↵2 which is the inner
product of the vectors of the top two goods here (milk/bananas). Finally, ↵4

0↵5 will be
of interest: it relates purchases of shredded cheese and of extra-large eggs.
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Figure 1: Precise Simulation: the evolution of various estimates as epochs pass during
the estimation. Parameter estimates greater than 2 are replaced with 2. The true
values are as follows: ↵0

1↵1 = 0.83 (‘milk-milk’) ; ↵0
1↵2 = �0.15 (‘milk-bananas’);

↵0
4↵5 = �0.05 (‘cheese-eggs’); d1 = 0.28; d2 = 0.0002.

co-present in bundles, perhaps related to their use together in standard cooking recipes

such as for omelets.

4.3.2 Precise simulation: results

We collected 41,700 simulated bundles, each of which contained nine items from among

a universe of 50 goods. It was taken as known that K = 16. We then ran the fitting

algorithm for 10,000 epochs. There were 819 parameters to estimate.

Figure 1 plots certain parameter values as epochs pass during estimation. Estimates

establish ergodic distributions after around 4,000 epochs.

To assess how close these distributions are to the truth, we average fitted parameter

values in the final 100 epochs, and plot these against true parameter values in Figures 2

and 3. Over all, and pending better methods of inference, the fit seems quite acceptable

in this Precise Simulation.

4.3.3 Commensurate simulation: results

We now turn to a more challenging simulation, which is more in line with our empirical

objectives. This time, 2,500 goods are present: we must estimate attribute vectors for
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Figure 2: Precise Simulation: a cross-plot of some of the fitted values of  (✓⇤) against
their true (original) values. We average fitted parameter values in the final 100 epochs,
and plot these against true parameter values. The 1,275 quantities plotted here are
{↵0

i↵j : 1  i  j  50}.

Figure 3: Precise Simulation: a cross-plot of some of the fitted values of  (✓⇤) against
their true (original) values. We average fitted values in the final 100 epochs, and plot these
against true parameter values. The 50 quantities plotted here are {b0↵j : 1  j  50}.
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Figure 4: Commensurate Simulation: the evolution of various estimates as epochs pass
during the estimation. The true values are as follows: ↵0

1↵1 = 0.83 (‘milk-milk’) ;
↵0

1↵2 = �0.15 (‘milk-bananas’); ↵0
4↵5 = �0.05 (‘cheese-eggs’); d1 = 0.28; d2 = 0.0002.

every one of these. We again take it as known thatK = 16, so that in all there were 40,019

parameters to estimate. 112,000 simulated bundles were collected, which is 16% more

than we will have access to in our empirical application. Each bundle again contained

nine items (in various quantities). We report on the first 400 epochs.

Figure 4 plots some parameter values as epochs pass during estimation. This is a

less stable picture than Figure 1, which is directly comparable. But by eye, it seems

that after around 200 epochs estimates are settling into ergodic distributions. This is

noticeably sooner than in the Precise Simulation, due presumably to the larger dataset

and perhaps the greater variety of bundles.

As we did for the Precise Simulation we average fitted parameter values over the

final 100 epochs, and plot these against true parameter values in Figures 5 and 6. To

be directly comparable, these figures report information only for the set of goods which

also appear for the Precise Simulation in Figures 2 and 3 (although there is a vast set

of additional parameter values which were estimated at the same time). Over all, and

pending better methods of inference, the fit is not as good as in the Precise Simulation

despite our larger dataset, but is acceptable.

We will see in Section 5 that our real dataset will be about the same size as the one
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Figure 5: Commensurate Simulation: a cross-plot of some of the fitted values of  (✓⇤)
against their true (original) values. We average fitted values in the final 100 epochs,
and plot these against true parameter values. The 1,275 quantities plotted here are
{↵0

i↵j : 1  i  j  50}.

used in this simulation and that we will use early stopping criteria to aid in judging a

suitable number of epochs to use in estimation. However, given this simulation’s smaller

dataset, fitting for 400 epochs on the real dataset would appear appropriate, although

perhaps a little on the high side.

5 Empirical application

We apply our model to scanner data made available by DunnHumby, a customer data

science company. The dataset, named ‘The Complete Journey’ by DunnHumby, details

approximately 2.6m purchases by 2,500 households in the US over a two-year period.

The households, described as frequent shoppers at a retailer, were recruited to a program

whereby they recorded their purchases.

The start and end dates of this dataset are not made available to us, but days and

weeks are clearly identified by number. We exclude from our study the final 26 weeks of

the data, for a future out-of-sample validation exercise. We have never considered this

data. We also exclude the first 15 weeks, during which time new households continued

to join the program. We study the remaining 1.6m purchases, and find that they were
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Figure 6: Commensurate Simulation: a cross-plot of some of the fitted values of  (✓⇤)
against their true (original) values. We average fitted values in the final 100 epochs, and
plot these against true parameter values. Although there are estimates for 2,500 goods,
the 50 quantities plotted here are {b0↵j : 1  j  50}.

made on 178,212 separate check-out occasions over 60 weeks.

We view each such check-out at the till as recording a single consumption bundle.

On average, bundles cost 28.56 and contained 8 items. The most expensive bundle cost

961.49; and the biggest bundle contained 141 items.

For each good, we observe an SKU code, store sub-department information, and

anonymous manufacturer and brand codes. We also observe a product description such

as for example CONDIMENTS/SAUCES|STEAK & WORCHESTER SAUCE, and in some cases a

product size in various units such as ounces or gallons. We consider each household to

be a single consumer.

When we distinguish products by their descriptions, manufacturers, brands and de-

partments, as well as by their sizes bucketed into 20% bins, we find 24,680 goods. On

average, each of these goods is mentioned 60 times in our data.

We remove a long tail of 19,777 goods which are purchased fewer than 50 times. This

done, we remove the 200 low-paying consumers who still spent on average less than 10

per visit. We finally remove a further 1,440 consumers, who went to the retailer fewer

than 50 times. After this procedure, we are left with a vocabulary of 4,737 goods and
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986 consumers who formed from these goods 96,285 consumption bundles.

We estimate individual-specific preference parameters, [bu, d1u, d2u, d3u], for these con-

sumers, whom we index throughout this Section with {u 2 N+ : u  986}. DunnHumby

provides self-reported demographic household information for 588 of these individuals.

The model we fit includes the period-specific dummy terms introduced in Section

2.6. We break our dataset into four-week periods, of which there are 15, and for the jth

such period, ⌧j, we therefore estimate a period-specific term, b⌧j , which is a vector in RK

describing temporary surges in any of the K attributes’ desirability, that are common to

all consumers in the four-week period. We impose the constraint that this term’s average

value across our 15 periods is 0 2 RK.

For each consumption bundle in our data, we know the period, ⌧j, in which it occurred.

In our fitting procedure we repeatedly apply the signal function described in Section 4

to the bundle. The resulting signal sets contain false bundles which include other goods,

that were not in the true bundle. We set the price of these other goods to the average

price at which they were purchased during period ⌧j.15

Altogether, the model has 94,766 parameters. We use the code at www.github.com/

jeremy-large/RUBE to estimate it. This uses a stochastic gradient descent method.

Section 4 specifies and simulates this arrangement in detail.

5.1 Validation accuracy

We hold-out a small sliver, two per cent, of our data for validation testing. We equip

each bundle in this validation dataset with two fixed signal sets. During estimation, we

consider an ancillary classification exercise where after each epoch, we assess validation

accuracy. Thus, for each signal set in the validation dataset, we identify the bundle with

the greatest estimated utility; and we count how often this is the true bundle. This may

be thought of as Bayes classification using interim, plug-in, parameter values.

When all parameters of the model are set to zero, this classification exercise yields a

validation accuracy of 1%. With randomly-seeded parameters as detailed in section 4.1,

this accuracy stands at 7%. But, after around 150 epochs, validation accuracy plateaus

at around 30%. About a third of the time, therefore, our classifier is able to identify the

truth from among a set of 100 possible bundles, which were not used to fit it. We stop

15In the event that the other good was not at all purchased during ⌧j , we set its price to its average
across our full dataset.
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self-reported count mean std 25% 50% 75%

household income median

p.a. ( )

175K+ 21 0.21 0.12 0.15 0.2 0.27
150-174K 23 0.22 0.09 0.16 0.23 0.28
125-149K 28 0.29 0.18 0.15 0.22 0.4
100-124K 26 0.33 0.11 0.23 0.32 0.41
75-99K 66 0.29 0.15 0.2 0.25 0.38
50-74K 140 0.35 0.17 0.25 0.32 0.41
35-49K 118 0.38 0.19 0.24 0.35 0.49
25-34K 58 0.42 0.22 0.27 0.4 0.54
15-24K 57 0.43 0.21 0.27 0.36 0.58

Under 15K 51 0.39 0.16 0.26 0.38 0.5

Table 3: Distribution of d1 across households reporting demographic information. We
estimate household-specific preference parameters, [bu, d1u, d2u, d3u], for 986 households,
u. DunnHumby provides self-reported demographic information for 588 of these house-
holds, which partitions them by income band. The table displays income bands by
decreasing self-reported a✏uence. Means, standard deviations, and quantiles of d1u (the
linear coe�cient on expenditure) are shown and are broadly increasing as a✏uence falls.
The categories, 250K+, 200-249K, 175-199K contain small numbers of observations and
have been coalesced.

the algorithm after 400 epochs.

5.2 Estimated parameters and results

As we see, then, estimating the 94,766 parameters of our empirical model materially

improves forecast accuracy on a reserved dataset. But it is also possible to gain insight

by interpreting these estimated parameters. In this section, we report on several estimates

selected for their illustrative interest, namely:

1. The distribution of bd1, which estimates linear dis-utility of expenditure for various

households.

2. Properties of b↵21, the attribute vector of Good 21, as described at the base of

Table 2. This good is the most commonly purchased hot dog bun in our dataset.

It is interesting to look at Good 21, because of our informal knowledge that it is

used in conjunction with other goods, such as hot dogs, sausages, salsa, and even

burgers.
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3. Large elements of the vector bA1 (which is the first row of bA). This vector evaluates

the first attribute, which has a special role capturing product-specific dis-utility of

expenditure. If bA1` is high for some good `, then consumers, u, with d3u > 0 are

particularly disinclined to incur expense when buying it.

5.2.1 Linear dis-utility of expenditure

Table 3 compares our estimates of d1u, the linear term capturing the dis-utility of expen-

diture, with self-reported household income for the 588 households where these overlap.

We see that the mean estimate of d1u is 0.21 for those households, u, reporting annual

earnings in excess of 175k, but that this rises to 0.39 for those reporting annual earnings

below 15k. As we might have expected, therefore, those households who say that their

income is high are less deterred from consumption by its expense.

5.2.2 Demand for hot dog buns

Among the most frequently purchased items listed in Table 2, the 21st item, a hot dog

bun, yields interesting substitution patterns with other goods. Indeed, its description

alone indicates that it is normally thought to be used in concert with at least one other

good, namely a hot dog. We will call it Good 21 below.

We study Good 21 in two ways, both of which calculate cosine similarities. Let us

define the cosine similarity between good ` and good j as the cosine of the angle between

vectors b↵` and b↵j . It is therefore an estimate, which lies in the interval [�1, 1].

A cosine similarity of 1 indicates that two vectors are identical up to a positive

constant, while a similarity of -1 indicates vectors which point in opposite directions.

Because it is a normalization of the dot products ↵0
`↵j discussed in Section 2, a large

negative cosine similarity between two goods is likely to indicate it is normally desirable

to purchase them together, if at all.

Table 4 exhibits the 35 goods in the data, which contain ‘HOT DOG’ in their de-

scription. The table is ordered by decreasing estimated cosine similarity to Good 21.

The most similar tabulated goods to Good 21 are exactly the other 8 varieties of hot dog

bun o↵ered in store. Their estimated cosine similarities to it all exceed 0.3. The rest of

the goods appearing in the list have lower cosine similarity to Good 21. They are many

varieties of hot dogs, and chili sauce for hot dogs.
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Cosine Manu- SUB- COMMODITY-

Similarity facturer DESC DESC

0 1.000 69 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
10 0.834 69 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
12 0.812 69 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
19 0.793 69 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
25 0.784 910 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
35 0.744 910 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS

199 0.565 1638 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
266 0.521 1838 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
802 0.331 69 HOT DOG BUNS BAKED BREAD/BUNS/ROLLS
1006 0.275 93 KOSHER/SPECIALTY HOT DOGS
3065 -0.159 69 HOT DOG CHILI SAUCE MEAT - SHELF STABLE
3133 -0.17 665 PREMIUM - MEAT HOT DOGS
3281 -0.199 83 HOT DOG CHILI SAUCE MEAT - SHELF STABLE
3671 -0.29 1323 PREMIUM - MEAT HOT DOGS
3678 -0.291 69 PREMIUM - MEAT HOT DOGS
3726 -0.303 1094 KOSHER/SPECIALTY HOT DOGS
4034 -0.387 69 PREMIUM - BEEF HOT DOGS
4056 -0.39 593 HOT DOG CHILI SAUCE MEAT - SHELF STABLE
4101 -0.406 1089 BETTER FOR YOU HOT DOGS
4143 -0.419 1089 KOSHER/SPECIALTY HOT DOGS
4167 -0.427 2012 KOSHER/SPECIALTY HOT DOGS
4183 -0.433 1094 PREMIUM - MEAT HOT DOGS
4358 -0.491 665 KOSHER/SPECIALTY HOT DOGS
4436 -0.52 1323 PREMIUM - MEAT HOT DOGS
4478 -0.536 1094 PREMIUM - BEEF HOT DOGS
4514 -0.555 1323 BETTER FOR YOU HOT DOGS
4591 -0.604 69 ECONOMY - MEAT HOT DOGS
4594 -0.606 1719 BETTER FOR YOU HOT DOGS
4646 -0.646 1089 PREMIUM - BEEF HOT DOGS
4668 -0.671 1089 PREMIUM - BEEF HOT DOGS
4693 -0.715 5226 KOSHER/SPECIALTY HOT DOGS
4725 -0.781 1323 PREMIUM - BEEF HOT DOGS
4726 -0.783 1425 ECONOMY - MEAT HOT DOGS
4732 -0.835 1089 PREMIUM - MEAT HOT DOGS
4733 -0.837 1323 PREMIUM - MEAT HOT DOGS

Table 4: The 35 goods of the 4,737 goods described in Section 5, which contain ‘HOT DOG’
in their description. The table is ordered by decreasing estimated cosine similarity with
Good 21, which is a prevalent make of hot dog bun. This is an interesting good to look at
because it is likely to be used in conjunction with hot dogs. The most similar tabulated
goods to Good 21 are exactly the other 8 varieties of hot dog bun o↵ered in store. Their
estimated cosine similarities to it all exceed 0.3. Of the goods in this list, which we might
categorize intuitively as complements to hot dog buns, all but one appear with negative
cosine similarity to them.
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Token Cosine Manu- SUB- COMMODITY-

facturer DESC DESC

3062 -0.783 69 HAMBURGER BUNS BAKED BREAD/BUNS/ROLLS
4400 -0.789 1225 INSTANT BREAKFAST CONVENIENT BRKFST/WHLSM SNACKS
1020 -0.799 2296 SHAMPOO HAIR CARE PRODUCTS
2062 -0.807 3537 CHEESE: BULK CHEESES
205 -0.815 2 SQUASH ZUCCHINI SQUASH
118 -0.835 1089 PREMIUM - MEAT HOT DOGS

1536 -0.837 1323 PREMIUM - MEAT HOT DOGS
1262 -0.837 1094 PICKLES MISCELLANEOUS
400 -0.84 1089 HAM LUNCHMEAT
11 -0.865 69 HAMBURGER BUNS BAKED BREAD/BUNS/ROLLS

Table 5: The 10 goods of the 4,737 goods described in Section 5 that have the most
negative estimated cosine similarity to Good 21, which is a frequently purchased hot dog
bun. The product-Token is a unique identifier of the good, and orders goods in roughly
decreasing order of prevalence.

Table 5 describes the ten goods from among the 4,737 goods that have the most

negative estimated cosine similarity to these hot dog buns, Good 21. It is not a surprise

to see pickles, lunchmeat ham, sausages and hamburger-buns featured in this list.

The presence of shampoo in the list is more surprising: this may describe a coinci-

dental co-occurrence in our data, or indeed a real propensity to co-purchase. It could be

that K = 16 degrees of freedom is insu�cient and causes bias here.

5.2.3 Product-specific dis-utility of expenditure

In (4), which describes the expected utility of a bundle, q, part of the dis-utility of

expenditure is accounted for by the term �2d3(A
0
1q)(p

0q). This is non-zero for any

consumer, u, with d3u > 0, who is considering a product, j with A1j > 0. As such, cA1 is

a vector of estimates of product-specific dis-utilities of expenditure.

Table 6 details ten goods, `, with high estimates bA1`. These tend to be durables such

as paper towels or frozen fruit or pies, but can also be coupons which are redeemable for

gasoline. Before stocking-up on e.g. paper towels perhaps consumers prefer to wait for a

deal on the price.

Figures 7, 8, 9, 10, 11, and 12 contain further diagnostic information about the

estimated fit. The Appendix contains some discussion of the choice K = 16.
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product Â1` Manu- COMMODITY-

token facturer DESC

3760 7.91 69 FROZEN FRUIT
3156 1.21 781 CROUTONS SALAD TOPPERS BREAD
3224 0.64 1208 CARBONATED WATER - FLVRD SWEET
1092 0.58 1276 NON-CARB FLVRD DRNKNG/MNRL WAT
2217 0.34 69 PAPER TOWELS & HOLDERS
672 0.31 754 PASTA SAUCE
441 0.27 69 GASOLINE COUPONS

1711 0.25 69 POULTRY LUNCHMEAT
687 0.25 69 PUDDING & GELATIN CUPS/CANS
398 0.24 69 FRZN WHIPPED TOPPING

Table 6: The ten goods, `, with highest estimates bA1`. These tend to be durables such
as bottled water, but can also be snacks. The parameter captures product-specific dis-
utility of expenditure. Across the full dataset the upper 0.75 quantile of cA1 is 0.007.

6 Concluding remarks

We have presented a random utility model and estimation technique suitable for analyzing

large datasets. While our approach has many advantages there are also many areas

requiring future work. We now outline those areas where we believe future work would

be most beneficial.

First, we would like to know the asymptotic distribution of our estimator. Once this

is known we could calculate standard errors, confidence intervals, and perform hypothesis

tests. Second, more thought should be given to modeling unobserved preference hetero-

geneity. Currently, we take advantage of the fact that our dataset has a large number of

observations per consumer to reduce concerns of an incidental parameters problem. We

think future work should consider a version of our random utility model suitable for data

where each consumer is not seen many times.

This work can be considered in the light of substantial recent advances in natural

language processing, enabled by associating linguistic units such as words with vectors

of attributes. It is motivated by an ambitious question: Can we look ahead to a time

when, analogously, any attribute of a good that is significant for people can be identified

and inferred from consumption data? We suggest that this is a reasonable aspiration.
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A Appendix: Signal Functions

A.1 Small and Distinguishing Signal Functions

Here we flesh out the details of what it means for a signal function to be small and

distinguishing. First, we introduce the grounded quadratic class of functions.

Definition 2. A function g : NL
0 ! R is grounded quadratic if

g(q) = b0q + q0Bq, for all q 2 NL
0 (20)

for some b 2 RL and some symmetric L ⇥ L matrix B. The function g is degenerate if

g(q) = 0 for all q 2 NL
0 .

The following condition helps ensure that the signal function does not pass through

too much information about the true bundle.

Definition 3. A signal function S with support set Q is distinguishing if, for any non-

degenerate grounded quadratic function g, there exists a set Q 2 Q and q, q̃ 2 Q

satisfying g(q) 6= g(q̃).

Our consistent theorem also requires signal functions satisfy the following further

technical condition.

Definition 4. For a set Q let |Q| denote the number of elements in Q. A signal function

S with support Q is small if there exists a number J 2 N so that

1. |Q|  J for each Q 2 Q and also

2. ||q||1  J for all q 2 NL
0 such that P

⇣
S(q) = {q}

⌘
< 1.

A.2 The Small and Distinguishing Signal Function used in the

Application

Assumption 3 requires the signal functions to be small and distinguishing. Here we

provide an example of such a function which is the one we use in our application. In
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what follows let J and J 0 be elements of N. Let L = {1, . . . , L}. For each ` 2 L let I`

be a subset of N which contains J 0 elements. For q 2 NL
0 let Z(q) ✓ L be defined by

Z(q) = {` 2 L : q` = 0}

Similarly, define N(q) ✓ L by

N(q) = {` 2 L : q` 2 I`}

We shall proceed to define an object S̃(q) which will not contain q but will be defined

so that {q} [ {S̃(q)} is a signal function. To start, if N(q) = ? or #Z(q) < J then let

S̃(q) = ?. On the other hand, if both N(q) 6= ? and #Z(q) � J then define S̃(q) as

follows.

Let n(q) denote a uniform draw from N(q). Let z1(q), . . . , zJ(q) denote uniform

random draws from Z(q) made without replacement. Further, let ij(q) denote a uniform

draw from Izj(q). Let ⇡j(q) = [⇡j
1(q), . . . , ⇡

j
L(q))] denote the consumption bundle which

satisfies

⇡j
`(q) =

8
><

>:

ij(q), for ` = zj(q)

0, for ` = n(q)

q`, for ` /2 {zj(q), n(q)}

Let S̃(q) be uniform draws without replacement from {⇡1(q), . . . , ⇡J(q)} and let S be

defined by

S(q) = {q} [ S̃(q), for all q 2 NL
0 (21)

Proposition 7. S defined in (21) is a small and distinguishing signal function.

The proof of Proposition 7 is in Appendix B.

B Appendix: Proofs

B.1 Proof of Proposition 1

The proof of Proposition 1 relies on several lemmas. The first two lemmas are well-known

and so we state them without proof. They concern the Gumbel and logistic distributions.

For b 2 R write X ⇠ Gumbel(b) if X is a random variable with CDF

FX(x) = exp
�
� exp(b� x)

�

The following lemma shows that the max of two independently distributed Gumbel ran-

dom variables is itself a Gumbel random variable.
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Lemma 1. Suppose X and Y are independent and X ⇠ Gumbel(bX) and Y ⇠ Gumbel(bY ).

Then

max(X, Y ) ⇠ Gumbel

⇣
ln(exp(bX) + exp(bY ))

⌘

Next, for b 2 R write X ⇠ Logistic(b) if X is a random variable with CDF

FX(x) =
1

1 + exp(b� x)

The next lemma claims that the di↵erence of two independent Gumbel random variables

is a logistic random variable.

Lemma 2. Let X and Y be independent and X ⇠ Gumbel(bX) and Y ⇠ Gumbel(bY ).

Then

Y �X ⇠ Logistic(bY � bX)

The next lemma establishes that a certain series is finite.

Lemma 3. Suppose U is a standard Qua utility function. Then, for all p 2 RL
++,

X

q2NL
0

exp
⇣
U(q,p)

⌘
< 1 (22)

The proof of Lemma 3 appears in subsection B.1.1. We now prove Proposition 1.

Proof of Proposition 1. Fix some consumption bundle q 2 NL
0 and some price vector

p 2 RL
++. Let {q̃i

}i2N be a non-repeating enumeration of the elements in NL
0 \{q}. For

I 2 N [ {1} let vI be defined by

vI = ln

 
IX

i=1

exp
⇣
U(q̃i,p)

⌘!
(23)

and (recall that Ũ is defined in (5)) let ṽI be defined by

ṽI = sup
iI

Ũ(q̃i,p) (24)

Repeated application of Lemma 1 gives

ṽI ⇠ Gumbel (vI) , for I 2 N (25)

By Theorem 13.4(i) in Billingsley (1986) ṽ1 is a random variable taking values in the

extended real line. Let a 2 R. For I 2 N [ {1} let EI be the event that ṽI is less than
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or equal to a. We see that EI # E1 and using the continuity property of probability

measures (see Billingsley (1986) Theorem 2.1) we see

P (E1) = lim
I!1

P (EI) = lim
I!1

exp(� exp(vI � a)) = exp(� exp(v1 � a))

From Lemma 3 we know that v1 < 1 and thus we see that

ṽ1 ⇠ Gumbel(v1)

Applying Lemma 2 we see

f(q;p) = P

✓
Ũ(q,p0q) � max

q̃2NL
0

Ũ(q̃,p0q̃)

◆

= P
⇣
Ũ(q,p0q) � ṽ1

⌘

= P
⇣
0 � ṽ1 � Ũ(q,p0q)

⌘

=
1

1 + exp (v1 � U(Aq,p0q))

=
exp(U(Aq,p0q))

exp(U(Aq,p0q)) + exp (v1)

=
exp(U(Aq,p0q))P

q̃2NL
0
exp(U(Aq̃,p0q̃))

which completes the proof.

B.1.1 Proof of Lemma 3

The proof of Lemma 3 rests on a lemma which provides an upper bound on the number

of elements in a certain set. So, for some set B let |B| denote the number of elements in

B. For some vector v = [v1, . . . , vL] 2 RL let ||v||1 =
PL

`=1 |v`|. For Q 2 N0, define the

set B(Q) by

B(Q) =
n
q 2 NL

0 : ||q||1 = Q
o

(26)

The following lemma gives a upper bound on |B(Q)|.

Lemma 4. For Q 2 NL
0 ,

|B(Q)|  (Q+ 1)L�1 (27)

Proof of Lemma 4. The number |B(Q)| is the number of vectors q 2 NL
0 whose elements

sum up to Q. This coincides with the number of ways in which Q identical balls can be
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placed into L distinct boxes. We may thus find an expression for |B(Q)| using the well-

known formula for counting the number of ways of placing identical balls into distinct

boxes and thus,

|B(Q)| =

✓
Q+ L� 1

L� 1

◆

Applying this formula we have

|B(Q)| =
(Q+ L� 1)!

(L� 1)!Q!
=

L�1Y

`

✓
Q+ `

`

◆


L�1Y

`

(Q+ 1) = (Q+ 1)L�1

which establishes (27).

We now prove Lemma 3.

Proof of Lemma 3. Although the standard Qua utility function U(q,p) is only defined

for positive price vectors p � 0 we herein extend it to cover all price vectors p 2 RL
+

using the equation (4) as a definition. Now, given the quadratic form of U , the fact that

U is strictly concave in Aq and U is strictly decreasing in expenditure, it is clear that

there is some q⇤
2 NL and u⇤

2 R so that

u⇤ = U(q⇤, 0) � U(q,p), for all q 2 NL
0 and p 2 RL

+ (28)

Fix some p 2 RL
++ and let ⇢ > 0 be the smallest element in p. Clearly,

p0q  ⇢||q||1 (29)

Let e1 = [1, 0, . . . , 0]. Now, applying (4), (28), the fact that d3 � 0, and (29), we see

U(q,p) = b0Aq � q0A0Aq � d1p
0q � d2(p

0q)2 � 2d3e
0
1Aqp0q

 u⇤
� d1p

0q � d2(p
0q)2 � 2d3e

0
1Aqp0q

 u⇤
� d1p

0q � d2(p
0q)2

 u⇤
� d1⇢||q||1 � d2⇢

2
||q||21 (30)
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Define B(Q) by (26). Applying (30) and Lemma 4 we see

X

q2NL
0

exp
⇣
U(q,p)

⌘


X

q2NL
0

exp
⇣
u⇤

� d1⇢||q||1 � d2⇢
2
||q||21

⌘

= exp(u⇤)
X

q2NL
0

exp
⇣
� d1⇢||q||1 � d2⇢

2
||q||21

⌘

= exp(u⇤)
1X

Q=0

X

q2B(Q)

exp
⇣
� d1⇢||q||1 � d2⇢

2
||q||21

⌘

= exp(u⇤)
1X

Q=0

X

q2B(Q)

exp
⇣
� d1⇢Q� d2⇢

2Q2
⌘

 exp(u⇤)
1X

Q=0

(Q+ 1)L�1 exp
⇣
� d1⇢Q� d2⇢

2Q2
⌘
< 1

where the final inequality follows ↵rom using the “ratio test” for the absolute convergence

of series.

B.2 Proof of Proposition 2

Let Ũ be a general Qua utility function with parameters b,A,B, d1, d2, d̃. As B is

positive definite we know that both B1/2 and B�1/2 exist. Let v1 2 RK be defined by

v1 =
B�1/2d̃

||B�1/2d̃||

Next, let v2,v3, . . . ,vK be K-vectors so that the K ⇥K matrix V = [v1 v2 . . . vK ] is

orthogonal (i.e. V 0V = V V 0 = I where I is the K ⇥K identity matrix).

Define d3 =
���B�1/2d̃

��� � 0. From the definition of V we have

d̃
0
B�1/2V a = d3a1, for all a = [a1, a2, . . . , aK ] 2 RK (31)

Define an attribute matrix Ã = V 0B1/2A and define Ũ : NL
0 ⇥ RL

++ ! R by

Ũ(q,p) = b0B�1/2V Ãq � q0Ã
0
Ãq � d1(p

0q)� d2(p
0q)2 � 2d3a1(p

0q) (32)

Clearly, this Ũ is a standard Qua utility function (note that b in (4) is equal to V 0B�1/2b

in (32)).
We claim that the displayed equation in Proposition 2 holds. Let e1 = [1, 0, 0, . . . , 0] 2
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RK , q 2 NL
0 , p 2 RL

++, m = p0q, and using (31) we see

Ũ(q,p) = b0B�1/2V Ãq � q0Ã
0
Ãq � d1m� d2m

2
� 2d̃

0
B�1/2V Ãqm

= b0B�1/2V V 0B1/2Aq � q0Ã
0
Ãq � d1m� d2m

2
� 2d̃

0
B�1/2V Ãqm

= b0Aq � q0Ã
0
Ãq � d1m� d2m

2
� 2d̃

0
B�1/2V Ãqm

= b0Aq � q0A0B1/2V V 0B1/2Aq � d1m� d2m
2
� 2d̃

0
B�1/2V Ãqm

= b0Aq � q0A0BAq � d1m� d2m
2
� 2d̃

0
B�1/2V Ãqm

= b0Aq � q0A0BAq � d1m� d2m
2
� 2d̃

0
B�1/2V V 0B1/2Aqm

= b0Aq � q0A0BAq � d1m� d2m
2
� 2d̃

0
Aqm

= U(q,p)

which proves the proposition.

B.3 Proof of Propositions 4 and 5

Proposition 4 is an obvious corollary of Proposition 5 and so only Proposition 5 is proved.
Fix some price vector p. In what follows we use the shorthand U(q) ⌘ U(q,p),

c ⌘ c(p), and f(q) ⌘ f(q|p). We have

@pE[c] = @p

0

@
X

q2NL

f(q)q

1

A = @p

 P
q2NL exp(U(q))q
P

q2NL exp(U(q))

!

=

⇣P
q2NL exp(U(q))

⌘⇣P
q2NL exp(U(q))q@pU(q)

⌘

⇣P
q2NL exp(U(q))

⌘2

�

⇣P
q2NL exp(U(q))q

⌘⇣P
q2NL exp(U(q))@pU(q)

⌘

⇣P
q2NL exp(U(q))

⌘2

=

0

@
X

q2NL

f(q)q@pU(q)

1

A�

0

@
X

q2NL

f(q)q

1

A

0

@
X

q2NL

f(q)@pU(q)

1

A

= E[c@pU(c)]� (E[c])(E[@pU(c)]) = Cov

⇣
c, @pU(c)

⌘

which completes the proof.

B.4 Identification and Estimation Proofs

The following class of utility functions will prove useful.

Definition 5. A utility function V : NL
0 ⇥ RL

++ ! R is a quadratic expenditure modified

utility function (Quem utility function) if

V (q,p) = � 0
0q � q0Gq � �1(p

0q)� �2(p
0q)2 � 2� 0

3q(p
0q) (33)

43



where �0 2 RL, G is a L ⇥ L symmetric matrix, �1, �2 are real numbers, and �3 2 RL.

A Quem V is degenerate if V (q,p) = 0 for all q 2 NL
0 and all p 2 RL

++.

Let � = [G,�0, �1, �2,�3] be a vector of parameters of the Quem utility function

and let � be all such vectors. For � 2 � let V (·, ·;�) : NL
0 ⇥ RL

++ ! R be the Quem

utility function with parameters �. For � 2 �, non-empty Q ✓ NL
0 , and p 2 RL

++ let

h(·|Q,p;�) : NL
0 ! [0, 1] be defined by

h(q|Q,p;�) =
exp(V (q,p;�))P
q̃2Q exp(V (q̃,p;�))

, for all q 2 NL
0 (34)

where V (q,p;�) is the Quem utility function with parameters �. Also, define h(q|p;�)

by

h(q|p;�) = h(q|NL
0 ,p;�), for all q 2 NL

0 (35)

where h(q|NL
0 ,p;�) is defined by (34). The following lemma connects the Quem utility

function to the standard Qua utility function.

Lemma 5. Let  : ⇥ ! � be defined by (8). Then,

U(q,p;✓) = V (q,p; (✓)), for all q 2 NL
0 , p 2 RL

++, ✓ 2 ⇥ (36)

Consequently, if f(q|p;✓) satisfies (7) then

f(q|p;✓) = h(q|p; (✓)), for all q 2 NL
0 (37)

Further, if f(·;Q,p;✓) satisfies (16) for some Q ✓ NL
0 then

f(q|Q,p;✓) = h(q|Q,p; (✓)), for all q 2 NL
0 (38)

Proof. The proof is just a matter of plugging in definitions.

The following is crucial for the proof of Proposition 3.

Lemma 6. Let h be defined by (34). Let S be a distinguishing signal function with

support Q, let E ✓ RL
++ be a non-empty open set, and let �, �̃ 2 �. Then, � 6= �̃ if and

only if there exists a non-empty open set E 0
✓ E so that

h(q|Q,p;�) 6= h(q|Q,p, �̃), for some Q 2 Q, q 2 Q, and all p 2 E 0 (39)

The proof of Lemma 6 is in Section B.4.1.
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Proof of Proposition 3. It is trivial to show that 3. =) 2. =) 1. So, we focus on the

other direction. We show that 1. =) 3. or more precisely we show that not 3. implies

not 1. So, assume that item 3. does not hold.

Let  be defined by (8). As 3. does not hold we see that  (✓) 6=  (✓̃). Next, let

S be the signal function which satisfies S(q) = N0 for all q. It is easily shown that S

is distinguishing. Thus, by setting � =  (✓) and �̃ =  (✓̃) we may apply Lemma 6 to

see that there is some non-empty open set E 0
✓ E so that (39) holds. From Lemma 5

equation (36) we see that item 1. does not hold.

B.4.1 Proof of Lemma 6

The proof of Lemma 6 relies on 3 lemmas.

Lemma 7. Let V be a non-degenerate Quem utility function and let E ✓ RL
+ be a non-

empty open set. There exists a p 2 E so that V (q,p) is a non-degenerate grounded

quadratic function of q.

Proof. Let V be a Quem utility function. Suppose that V (q,p) is a degenerate grounded

quadratic function of q for all p 2 E. We shall show that V must be degenerate. First,

note that

V (q,p) = 0 for all q 2 NL
0 and all p 2 E (40)

Let us di↵erentiate V (q,p) twice with respect to p. This gives

@pV (q,p) = ��1q � 2�2p
0qq � 2� 0

3qq (41)

@2pV (q,p) = �2�2qq
0 (42)

Equation (40) implies that the expressions in both (41) and (42) are 0. From equation

(42) we see that �2 = 0 (fix q and vary p to see this). Now, from (41) and the fact that

�2 = 0 we see

��1 � 2� 0
3q = 0, for all q 6= 0

But, this is easily shown to imply �1 = 0 and �3 = 0. So, we may now express V (q,p)

as

V (q,p0q) = � 0
0q � q0Gq

It is easy to show that �0 = 0 and G = 0 from (40). Thus, V is indeed degenerate.

45



Lemma 8. Let S be a distinguishing signal function with support Q. Let E ✓ RL
++ be

a non-empty open set. For each non-degenerate Quem utility function V there exists a

Q 2 Q, q, q̃ 2 Q, and a non-empty open set E 0
✓ E satisfying

V (q,p) 6= V (q̃,p), for all p 2 E 0 (43)

Proof. Let V be a non-degenerate Quem utility function. From Lemma 7 there exists a

p̄ 2 E so that V (q, p̄) is a non-degenerate grounded quadratic function of q. As S is

distinguishing there exists a set Q 2 Q and q, q̃ 2 Q satisfying

V (q, p̄) 6= V (q̃, p̄) (44)

But, as V is a continuous function we may find some neighborhood of p̄ so that (44)

holds for any p in this set. This establishes (43).

Lemma 9. Let (bn) and (b̃n) be two sequences in R where
P1

n=1 exp(bn) < 1 and

P1
n=1 exp(b̃n) < 1. There exists a number k 2 R so that bN = bÑ + k for all N 2 N if

and only if

exp(bN)P1
n=1 exp(bn)

=
exp(b̃N)P1
n=1 exp(b̃n)

, for each N 2 N (45)

Proof. The “only if” part is obvious so let’s prove the “if” part. Let k be

k = ln

 P1
n=1 exp(bn)P1
n=1 exp(b̃n)

!

Rearranging (45) we see

exp(bN � b̃N) =

P1
n=1 exp(bn)P1
n=1 exp(b̃n)

Taking logs of both sides and rearranging yields the result.

We may now prove Lemma 6.

Proof of Lemma 6. The “if” part is obvious so we focus on the “only if” part. Suppose

� 6= �̃. Let W : NL
0 ⇥ R ! R be defined by

W (q,p) = V (q,p; �̃)� V (q,p;�)

It is easily shown that W is a non-degenerate Quem utility function. Thus, by Lemma 8

there exists Q 2 Q, q, q̃ 2 Q, and a non-empty open set E 0
✓ E so that

W (q,p) 6= W (q̃,p), for all p 2 E 0
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Plugging in the definition of W and rearranging we see

V (q̃,p; �̃)� V (q,p; �̃) 6= V (q̃,p;�)� V (q,p;�)

This implies that for each p 2 E 0 there is no constant k 2 R so that both V (q,p; �̃) =

V (q,p;�) + k and V (q̃,p; �̃) = V (q̃,p;�) + k. Thus, Lemma 9 establishes (39).

B.4.2 Proof of Proposition 6

Fix some q 2 NL
0 and let Q 2 Q. Consider two cases: Case 1: q /2 Q and Case 2: q 2 Q.

Suppose Case 1 holds. As the event c 2 Q clearly implies c 6= q we see that the right

hand side of (15) is 0. On the other hand, by property (i) in the definition of a signal

function, we see that the event S(c) = Q implies the event c 2 Q. But, we have already

noted that the event c 2 Q implies c 6= q and so the left hand side of (15) is also 0.

Thus, (15) holds under Case 1.

Now, consider Case 2. We write S for S(c). By equation (14) and the assumption

that S(c) and ⇢ are independent conditional on c

P
⇣
S = Q

���c = q,⇢
⌘
= P

⇣
S = Q

���c = q̃,⇢
⌘

(46)

Now,

P
⇣
c = q

���S = Q,⇢
⌘
=

P (c = q and S = Q|⇢)

P (S = Q|⇢)

=
P (c = q and S = Q|⇢)P
q̃2Q P (c = q̃ and S = Q|⇢)

, by prop (i) of def 1

=
P (c = q|⇢)P (S = Q|c = q,⇢)P
q̃2Q P (c = q̃|⇢)P (S = Q|c = q̃,⇢)

=
P (c = q|⇢)P
q̃2Q P (c = q̃|⇢)

, by (46)

= P
⇣
c = q

���c 2 Q,⇢
⌘

which establishes (15) for Case 2. Finally, (16) is a easy consequence of (15).

B.4.3 Proof of Theorem 1

Equation (19) implicitly treats the range of  , which is a list of matrices, vectors, and
numbers, as a metric space. Let us be a bit more concrete about the metric space we have
in mind. It is easily seen that the range of  is a subset of � which is the collection of all
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lists of the form � = [G,�0, �1, �2,�3] where each such list corresponds to the parameters
of the Quem utility function defined in (33). Let d be the metric on � defined by

d
⇣
[G,�0, �1, �2,�3],[G̃, �̃0, �̃1, �̃2, �̃3]

⌘

= d(G, G̃) + ||�0 � �̃0||1 + |�1 � �̃1|+ |�2 � �̃2|+ ||� � �̃||1

where || · ||1 is the usual 1-norm and d(G, G̃) =
PL

j=1

PL
`=1 |Gj,` � G̃j,`|. We shall also

use the same metric for ⇥ (that is, the distance between two lists in ⇥ is the sum of the

distances between each element in the two lists). Because � and ⇥ are metric spaces we

can meaningfully discuss open, closed, and compact subsets of these sets.
We also treat � as a vector space where, for real numbers k, k0 we have

k[G,�0, �1, �2,�3]+k0[G̃, �̃0, �̃1, �̃2, �̃3]

= [kG+ k0G̃, k�0 + k0�̃0, k�1 + k0�̃1, k�2 + k0�2, k�3 + k0�̃3]

Using the same approach we may treat ⇥ as a vector space. To prove Theorem 1 we

require several lemmas.

Lemma 10. Let ✓̃ = [Ã, b̃, d1, d2, d3] 2 ⇥ and suppose that Ã has rank K. For � > 0

let B� denote a closed ball in � centered at  (✓̃). There is a �̄ > 0 such that  �1(B�) is

compact for all � 2 (0, �̄].

Lemma 11. Suppose Assumptions 3 and 5 hold and let h be defined by (35). Then,

E
h��� ln

�
h(cn|Sn,i,⇢n;�)

����
i
< 1, for all � 2 �, and all n, i (47)

Lemma 12. The function lnh(q|Q,p;�) defined by (35) is concave in � 2 �.

Lemma 13. Suppose FN(�) is a random variable for each N 2 N and � 2 �. Suppose

that FN satisfies the following.

1. FN : � ! R is concave for each N 2 N.

2. There exists a function F : � ! R so that FN(�)
a.s.
�! F (�) for all � 2 �.

Then, F is concave and for any compact set C ✓ �

sup
�2C

���FN(�)� F (�)
��� a.s.
�! 0 (48)
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Lemma 14. Let F : � ! R be a continuous function. Suppose there is a unique �̄ which

maximizes F . That is, there exists a �̄ 2 � so that

F (�̄) > F (�), for all � 6= �̄ (49)

For � > 0 let B� be a closed ball in � centered at �̄ with radius � > 0. For every compact

set C ✓ � and every � > 0 there exists an " > 0 so that

F (�̄)� F (�) > ", for all � 2 C\B� (50)

We now prove Theorem 1.

Proof of Theorem 1. For convenience let �⇤ =  (✓⇤). Let B� denote a closed ball in �

of radius � centered at �⇤. By Assumption 4 and Lemma 10 there is a �̄ > 0 so that

 �1(B�) is compact for all � 2 (0, �̄].

Next, define QN : � ! R by

QN(�) =
1

NI

NX

n=1

IX

i=1

ln
⇣
h(cn|Si,n,⇢n;�)

⌘

From Lemma 5 equation (38) we see

QN( (✓)) = LN(✓), for all ✓ 2 ⇥ (51)

where LN is defined by (17). Define Q : � ! R by

Q(�) = E
h
ln
⇣
h(c1|S1,1,⇢1;�)

⌘i
(52)

From Assumptions 3 and 5 and Lemma 11 we know Q(�) is finite for all � 2 �. Thus,

by Assumption 1 and the strong law of large numbers we know

QN(�)
a.s.
�! Q(�), for all � 2 � (53)

From Lemma 12 it is clear that QN is concave and so we may use (53) and Lemma 13

to see

sup
�2B�̄

���QN(�)�Q(�)
��� a.s.
�! 0 (54)

From now on we conditional our analysis on a point in the sample space on which

sup
�2B�̄

���QN(�)�Q(�)
���! 0 (55)
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We shall show that  (✓̂N) ! �⇤. This will prove the theorem as the set of all points in

the sample space which satisfy (55) contain a probability 1 event (by equation (54)).

Let � 2 (0, �̄) and for convenience let �̂N =  (✓̂N). We shall show that there exists

an N̄ 2 N so that

||�̂N � �⇤
|| < �, for all N � N̄ (56)

Of course (56) implies  (✓̂N) ⌘ �̂N ! �⇤ and so the proof is complete if we can show

(56).

From Assumption 2, and Lemma 6, and the conditional Kullback-Leibler information

inequality we see

Q(�⇤) > Q(�), for all � 6=  (✓⇤)

Thus, we may apply Lemma 14 to see that there exists an " > 0 so that

Q(�⇤)�Q(�) > ", for all � 2 B�̄\B� (57)

From (55) there exists an N̄ 2 N so that

sup
�2B�̄

���QN(�)�Q(�)
��� < "

2 , for all N � N̄ (58)

We claim that

QN(�
⇤) > QN(�), for all � 2 B�̄\B� and all N � N̄ (59)

To see (59) use equations (57) and (58) and note that for all � 2 B�̄\B� and all N � N̄

QN(�
⇤)�QN(�) = QN(�

⇤)�Q(�⇤) +Q(�⇤)�Q(�) +Q(�)�QN(�)

� Q(�⇤)�QN(�)� |QN(�
⇤)�Q(�⇤)|� |Q(�)�QN(�)|

> "� "
2 �

"
2 = 0

Thus, (59) holds. We next claim that

QN(�
⇤) > QN(�), for all � /2 B� and all N � N̄ (60)

So, let � /2 B�. If � 2 B�̄ then (60) follows from (59) so suppose that � /2 B�̄. Let

t 2 (0, 1) be chosen so that t� + (1 � t)�⇤ is on the boundary of B�̄. Now, we use (59)

and the concavity of QN to see

QN(�
⇤) > QN(t� + (1� t)�⇤) � tQN(�) + (1� t)QN(�

⇤)
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which gives (60) after rearranging.

B� is compact and so

argmax
✓2B�

LN(✓) (61)

is non-empty. Further, from (60) we see that the argmax in (18) and (61) coincide. Thus,

✓̂N is an element of the argmax in (61) (for all N � N̄) and consequently ||�̂N ��⇤
||  �

for all N � N̄ . Thus, (56) holds and so the theorem has been proved.

B.5 Proofs of lemmas used to prove Theorem 1

Proof of Lemma 10. For ✓ = [A, b, d1, d2, d3] 2 ⇥ let ✓1 = A, ✓2 = b, ✓3 = d1, ✓
4 = d2,

and ✓5 = d3. That is, ✓1 denotes the first entry in ✓, ✓2 denotes the second entry, and

so forth. Similarly, for � = [G,�0, �1, �2,�3] 2 � let �1 = G, �2 = �0, �
3 = �1, �4 = �2,

and �5 = �3.

Now, as Ã has rank K it is clear that Ã
0
Ã also has rank K. Thus, there exists

a closed ball C around Ã
0
Ã which only contains matrices of rank K. Let �̄ > 0 be a

number small enough so that � 2 B�̄ implies �0
2 C. Let � 2 (0, �̄]. We shall show that

 �1(B�) is compact.

As B� is closed and  is continuous we know that  �1(B�) is closed. So, the desired

conclusion holds if we can show that  �1(B�) is bounded. Now, if  �1(B�) were un-

bounded then there would be a sequence in  �1(B�) denoted ✓1,✓2, . . . where one of the

vectors or matrices in ✓n = [An, bn, d1,n, d2,n, d3,n] has an element whose absolute value

goes to 1. We shall show that this cannot be the case for any of the vectors nor the

matrix in [An, bn, d1,n, d2,n, d3,n].

First, it is clear that the sequence of matrices An could not have an element whose

absolute value tends to infinity as we know A0
nAn 2 C. Second, as An is bounded we

may assume, without loss of generality, that An converges to some matrix A (for if not

just consider sub-sequences). From the definition of C, the fact that A0
nAn 2 C, and

C is closed we see that each matrix An is rank K and additionally, A is rank K. Let

�n > 0 be the smallest eigenvalue of AnA
0
n. As A is rank K (and so AA0 is also rank

K) we know �n does not tend to 0. Now, we have

||A0
nbn|| =

q
b0nAnA

0
nbn � �n||bn||

Thus, if bn has an entry which tends to infinity in absolute value then also ||A0
nbn|| ! 1

which contradicts ✓n 2  �1(B�).
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Next, note that neither |d1,n| nor |d2,n| tend to infinity as a direct result of �n 2

 �1(B�). Finally, we have

||d3,nA
0
ne1|| = |d3,n|

q
e0
1AnA

0
ne1 � |d3,n|�n

So, if |d3,n| ! 1 then ||d3,nA
0
ne1|| also goes to infinity which contradicts ✓n 2  �1(B�).

Proof of Lemma 12. It is clear that V (q,p;�), defined by (33), is linear in parameters

and so it can be represented as

V (q,p;�) = w(q,p)0�

where w(q,p) is some transformation of the data. Thus, ln h(q|Q,p;�) can be expressed

as

lnh(q|Q,p;�) = ln

 
exp(w(q,p)0�)P
q̃2Q exp(w(q̃,p)0�)

!

But, this is the form of the log likelihood of the conditional logit and it is well-known

that this function is concave in �. See for example McFadden (1974).

Proof of Lemma 11. Let � 2 �. Using Assumption 3 it is straightforward to show that

there is some M 2 R large enough so that for all q 2 NL
0 , q̃ 2 S(q), and all p 2 RL

++

|V (q̃,p;�)| 

"
2X

k=0

2X

j=0

||q||kk||p||
j
j

#
M

Again applying Assumption 3 we see

0  � ln
�
h(cn|Sn,i,⇢n;�)

�
= � ln

 
exp(V (cn,⇢n;�))P

c̃2Sn,i
exp(V (c̃,⇢n;�))

!

 � ln

0

@
exp

⇣
�

hP2
k=0

P2
j=0 ||cn||

k
k||⇢n||

j
j

i
M
⌘

J exp
⇣hP2

k=0

P2
j=0 ||cn||

k
k||⇢n||

j
j

i
M
⌘

1

A

= 2

"
2X

k=0

2X

j=0

||cn||
k
k||⇢n||

j
j

#
M + ln J

Using this inequality and Assumption 5 we have

E
h�� ln

�
h(cn|Sn,i,⇢n;�)

���
i
 2

"
2X

k=0

2X

j=0

E
h
||cn||

k
k||⇢n||

j
j

i#
M + ln J < 1

which is what we needed to show.
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Proof of Lemma 13. Let �̃ = {�1,�2, . . .} be some countable dense subset of �. By item

2 of the lemma there is some probability 1 event E so that FN(�k) ! F (�k) for all k 2 N
as N ! 1 on E. Let C ✓ � be compact. By Rockafellar (1970) Theorem 10.8 and item

1 of the lemma, the function F is concave and the function FN converges uniformly on

C to F for any sample space point in E. But, E is a probability 1 event and so (48)

holds.

Proof of Lemma 14. Suppose C ✓ � is compact and suppose, for a contradiction, that

there is some � > 0 so that there is no " > 0 so that (50) holds. Then, we can find a

convergent sequence �n in C where F (�n) ! F (�̄) and each element of the sequence

satisfies ||�̄ � �n|| > �. From the continuity of F the limit of the sequence would

contradict the condition in (49).

B.6 Proof of Proposition 7

Lemma 15. If S defined by (21) is a signal function then it is distinguishing.

The proof of Lemma 15 follows the proof of Proposition 7.

Proof of Proposition 7. It is clear that S satisfies (i) and (iii) of Definition 1. So, we
show that S satisfies (ii). Now, if q 2 NL

0 has N(q = ?) or #Z(q) < J then S(q) = {q}
and so (14) holds. Now, suppose q 2 NL

0 is such that N(q) 6= ? and #Z(q) � J . Let Q
be some set in Q(q). Let q̃ 2 Q. First note that q, q̃ 2 Q implies #Z(q) = #Z(q̃) and
#N(q) = #N(q̃). Now, it is easy to show

P (S(q) = Q) =
1

#N(q)#Z(q)[#Z(q)� 1] . . . [#Z(q)� J ]

=
1

#N(q̃)#Z(q̃)[#Z(q̃)� 1] . . . [#Z(q̃)� J ]
= P (S(q̃) = Q)

Thus, S is a signal function. It is obvious that S is small so we just need to show that

it is distinguishing. That is S is distinguishing follows from Lemma 15.

B.7 Proof of Lemma 15

Let B be an M ⇥ M symmetric matrix and let bi,j denote the entry in row i, column

j. Let diag(B) = [b1,1, . . . , bM,M ] 2 RM . That is, diag(B) is the vector composed of the

elements on the diagonal of B. Similarly, let o↵(B) denote the vector

o↵(B) = [bi,j]i<j = [b1,2, b1,3, . . . , bM�1,M ]
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In other words, o↵(B) 2 RM(M�1)/2 denotes the o↵-diagonal elements of the bottom-left

triangle of matrix B.

Let S be a signal function. Let Q1(q) = {Q ✓ NL
0 : P (Q 2 S(q)) > 0}. Let Q2(q) be

defined by

Q2(q) =
[

q̃2Q(q)

Q1(q̃)

In other words, Q2(q) is the union of the supports of S(q̃) where the union is taken over

all q̃ 2 Q(q). Note that because q 2 Q(q) we have Q1(q) ✓ Q2(q). Similarly, for all

n 2 N define

Qn+1(q) =
[

q̃2Q(q)

Qn(q̃)

Finally, let Q1(q) = [n2NQn(q). It is easy to verify that q̃ 2 Q1(q) if and only if there

exists a sequence q1, q2, . . . , qN so that

q1 2 Q(q), q2 2 Q(q1), q3 2 Q(q2), . . . , qN 2 Q(qN�1), and q̃ 2 Q(qN)

For a set Q ✓ NL
0 let 1Q(q) be defined by

1Q(q) =

(
1, if q 2 Q

0, else

Lemma 16. Let S be a signal function and let Q̃ = {q1, . . . , qN} be a finite subset of

NL
0 . Let Q̃ be defined by

Q̃ =
[

q2Q̃

Q1(q)

Let {Q1, . . . , QM} be an arbitrary enumeration of the elements in Q̃. If the matrix

D =

2

4
q0
1 diag(q1q

0
1) o↵(q1q

0
1) 1Q1(q1) . . . 1QM (q1)

. . .
q0
N diag(qNq

0
N) o↵(qNq

0
N) 1Q1(qN) . . . 1QM (qN)

3

5

has full column rank then S is distinguishing.

Proof. We prove the lemma by supposing that S is not distinguishing and then we show

that the matrix D does not have full column rank. So, suppose S is not distinguishing.

This means that there is a b 2 RL and a symmetric L⇥L matrix B where, for all Q 2 Q̃

b0q + q0Bq = b0q̃ + q̃0Bq̃, for all q, q̃ 2 Q (62)
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and it is not the case that both b = 0 and B = 0. Note that (62) implies that for each

m 2 {1, . . . ,M} there exists a number �m so that

�m = b0q + q0Bq, for all q 2 Qm

This is clearly implies

0 = b0qn + q0
nBqn �

MX

m=1

�m1Qm(qn), for all n 2 {1, . . . , N} (63)

Let v be the vector defined by

v = [b0, diag(B)0, 2 o↵(B)0,��1, . . . ,��M ]

Applying (63) we see

Dv =

2

4
b0q1 + diag(B)0 diag(q1q

0
1) + 2 o↵(B)0 o↵(q1q

0
1)�

PM
m=1 �m1Qm(q1)

. . .
b0qN + diag(B)0 diag(qNq

0
N) + 2 o↵(B)0 o↵(qNq

0
N)�

PM
m=1 1Qm(qN)

3

5

=

2

4
b0q1 + q0

1Bq1 �
PM

m=1 �m1Qm(q1)
. . .

b0qN + q0
NBqN �

PM
m=1 1Qm(qN)

3

5 = 0

Thus, D cannot have full column rank.

We can now prove Lemma 15.

Proof of Lemma 15. Let v1,`, v2,`, . . . , vJ,` enumerate the values in I`. Let L̃ = L(L�1)/2.

Let Q̃1 denote the finite subset of NL
0 which satisfies

Q̃1 =
n
v1,`e` 2 NL

0 : ` 2 {1, . . . , L}
o
⌘ {q1, . . . , qL}

Let Q̃2 be defined by

Q̃2 =
n
v2,`e` 2 NL

0 : ` 2 {1, . . . , L}
o
⌘ {qL+1, . . . , q2L}

Let Q̃11 be defined by

Q̃11 =
n
v1,`e` + v1,kek 2 NL

0 : ` 6= k
o
⌘ {q2L+1, . . . qL̃}

Let Q̃3 be the singleton set defined by

Q̃3 = {v3,1e1} ⌘ {qL̃+1}
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Let Q̃12 be the singleton set defined by

Q̃12 = v1,1e1 + v2,2e2 ⌘ {qL̃+2}

Let Q̃ be the union of the sets just defined. That is,

Q̃ = Q̃1 [ Q̃2 [ Q̃3 [ Q̃11

It is clear that for all q, q̃ 2 Q̃1 [ Q̃2 [ Q̃3 we have Q1(q) = Q1(q̃). Let Q1 denote

this subset of NL
0 (so, Q1 = Q1(q) for any q 2 Q̃1 [ Q̃2 [ Q̃3). Similarly, it is clear that

for all q, q̃ 2 Q̃11 [ Q̃12 we have Q1(q) = Q1(q̃). Let Q2 denote this subset of NL
0 (so,

Q2 = Q1(q) for any q 2 Q̃11 [ Q̃12).

We shall apply Lemma 16. To do this, let D denote the matrix in Lemma 16. Let V1

denote the L⇥L diagonal matrix whose diagonal entries are v1,1, v1,2, . . . , v1,L. Let V2 be

the L⇥L diagonal matrix whose diagonal entries are v2,1, v2,2, . . . , v2,L. Let V3 denote the

L̃⇥ L̃ diagonal matrix whose diagonal entries are v1,`v1,k for ` < k where the entries may

be enumerated as v1,1v1,2, . . . , v1,1v1,L, v1,2v1,3, . . . v1,2v1,L, v1,3v1,4, . . . , v1,L�1v1,L. If D

and D0 are two matrices with the same rank then write D ⇠ D0. We will alter D using

elementary row and column operations (which preserve the rank). It can be verified that

D can be expressed as

D =

2

66664

V1 V 2
1 0 ◆ 0

V2 V 2
2 0 ◆ 0

X1 X2 V3 0 ◆
v3,1e0

1 v23,1e
0
1 0 1 0

x0
1 x0

2 v1,1v2,2e0
1 0 1

3

77775

First, we perform a column and row swap which yields

D ⇠

2

66664

V1 V 2
1 ◆ 0 0

V2 V 2
2 ◆ 0 0

v3,1e0
1 v23,1e

0
1 1 0 0

X1 X2 0 V3 ◆
x0
1 x0

2 0 v1,1v2,2e0
1 1

3

77775
⌘ D0

Note that the matrix D0 has the same rank as D and because of the presence of the zeros

in the upper right of D0 we see that D0 has full rank if the following two matrices are

each full rank

D1 =

2

4
V1 V 2

1 ◆
V2 V 2

2 ◆
v3,1e0

1 v23,1e
0
1 1

3

5 and D2 =


V3 ◆

v1,1v2,2e0
1 1

�
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Now, we have

D1 ⇠

2

4
I V1 V �1

1 ◆
V2 V 2

2 ◆
v3,1e0

1 v23,1e
0
1 1

3

5 ⇠

2

4
I V1 V �1

1 ◆
0 V 2

2 � V2V1 ◆� V2V
�1
1 ◆

0 (v23,1 � v3,1v1,1)e0
1 1� v3,1

v1,1

3

5

⇠

2

4
I V1 V �1

1 ◆
0 I (V2 � V1)�1(V �1

2 � V �1
1 )◆

0 (v23,1 � v3,1v1,1)e0
1 1� v3,1

v1,1

3

5

=

2

4
I V1 V �1

1 ◆
0 I �V �1

2 V �1
1 ◆

0 (v23,1 � v3,1v1,1)e0
1 1� v3,1

v1,1

3

5

⇠

2

64
I V1 V �1

1 ◆
0 I V �1

2 V �1
1 ◆

0 0 1� v3,1
v1,1

+
v23,1�v3,1v1,1

v1,1v2,1

3

75

So, D1 is full rank if 1� v3,1
v1,1

+
v23,1�v3,1v1,1

v1,1v2,1
6= 0. This is equivalent to

v1,1v2,1 � v2,1v3,1 + v23,1 � v1,1v3,1 = 0

We have

v1,1v2,1 � v2,1v3,1 + v23,1 � v1,1v3,1 = (v3,1 � v1,1)(v3,1 � v1,2)

and so D1 is full rank unless v3,1 = v1,1 or v3,1 = v2,1. But, from the definition of v1,1,
v2,1, and v3,1 we know this is not the case. Thus, D1 is full rank. We now show that D2

is full rank.

D2 ⇠


I V �1

3 ◆
v1,1v2,2e0

1 1

�
⇠


I V �1

3 ◆
0 1� v1,1v2,2

v1,1v1,2

�
=


I V �1

3 ◆
0 1� v2,2

v1,2

�
(64)

Thus, D2 is full rank if v1,2 6= v2,2. But, this is true from the definition of v1,2 and

v2,2 and so D2 is full rank. So, we see that D is full rank and so, by Lemma 16, S is

distinguishing.

B.8 Choice of the dimensionality, K

The fitted Â can be viewed as L observations of a multivariate random variable, whose

empirical sample covariance is ÂÂ0. Applying principal component analysis to Â rotates

the embedding coordinates such that its empirical covariance is diagonal. In our empirical

application, the contribution of the smallest variance in this diagonalization would appear

to be fairly low, measuring only 1.8% of the sum of the variances. This is illustrated in

Figure 12.
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Figure 7: A histogram of the estimated values of d1 for the 986 tracked customers in
the DunnHumby dataset as described in Section 5.

Figure 8: A histogram of the estimated values of d2 for the 986 tracked customers in
the DunnHumby dataset as described in Section 5.
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Figure 9: A histogram of the estimated values of d3 for the 986 tracked customers in
the DunnHumby dataset as described in Section 5.
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Figure 10: Goods/products: A scatter plot matrix displaying all pairwise relationships
among the 4,737 estimated columns of A. Each row of attribute matrix A measures
exposure to one of the 16 latent attributes for which there is demand. This is an ‘em-
bedding’ of goods in the DunnHumby dataset, as described in Section 5.
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Figure 11: Consumers: A scatter plot matrix displaying all pairwise relationships among
the 986 estimated rows of b. Each column of the matrix b measures preferences for one of
the latent attributes. This is an ‘embedding’ of the consumers tracked in the DunnHumby
dataset, as described in Section 5.
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Figure 12: A plot of squared eigenvalues obtained in a principal component decom-
position of the estimated matrix A as described in Section B.8. They are displayed in
decreasing order.
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