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Spontaneous Emergence of a Metabolism

Networks of catalyzed reactions with nonlinear feedback have been pro-
posed to play an important role in the origin of life. We investigate this
possibility in a polymer chemistry with catalyzed cleavage and condensa-
tion reactions, studying the properties of a well-stirred reactor driven away
from equilibrium by the flow of mass. Near equilibrium the distribution
of material is uninteresting; it favors short polymers but is otherwise ho-
mogeneous. However, under appropriate non-equilibrium conditions, the
situation changes radically: The nonlinear feedback of the reaction net-
work focuses the material of the system into a few specific polymer species,
whose concentrations can be orders of magnitude above the background.
Like a metabolism, the network of catalytic reactions “digests” the mate-
rial of its environment, incorporating it into its own form. For this reason
we call it an autocatalytic metabolism. We vary the diet of an autocatalytic
metabolism, and demonstrate that under some variations it persists almost
unchanged, while in other cases it dies, We argue that the dynamical sta-
bility of autocatalytic metabolisms gives them regenerative properties that
allow them to repair themselves and to propagate through time.
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1. MOTIVATION
1.1 SETTING THE STAGE FOR AN ORIGIN OF LIFE

When Miller and Urey discovered that amino acids could be formed under con-
ditions that might be similar to those of the prebiotic earth,?® the spontaneous
synthesis of proteins seemed just around the corner. However, this turns out to be
much more difficult than the spontaneous synthesis of individual amino acids. Equi-
librium conditions tend to favor dissociation, and generate a concentration profile
that is fairly uniform. Except for occasional fluctuations, for long polymers the pop-
ulation of any given molecular species is typically zero. The population distribution
of polymers is homogeneous, nonspecific, and uninteresting. This is in contrast to
living organisms, which have high concentrations of a few specific polymer species.fi]

Contemporary organisms achieve specificity through a codependent relation-
ship between templates and enzymes. Proteins and nucleic acids synthesize each
other through a replication mechanism in which none of the components synthe-
sizes itself. Even for the simplest organisms, this process is highly complex. There
seems to be a minimum level of complexity below which a replicating machine based
on proteins and nucleic acids simply cannot function. While it is easy to understand
how such a replicating machine perpetuates itself, it is difficult to understand how
the necessary initial conditions ever arose on their own. The probability that both
enzymes and templates could be created through a statistical fluctuation is effec-
tively nil. This suggests that other processes preceded contemporary life.

The idea that enzymatic activity might have set the stage for the origin of life
was developed by Oparin, who suggested that coacervates may have played a major
role.? Early experiments unsuccessfully attempted to use clays and other materials
as nonspecific catalysts for polymerization.3* Calvin studied several different sce-
narios through which catalytic activity could provide a selection mechanism, even
without self-replication.®® In 1971 Réssler,?"38 Eigen,!? and Kauffman?® developed
this idea further. In particular, R@ssler envisioned a form of chemical evolution sim-
ilar to that studied here. He emphasized the importance of specific catalysts which
catalyze only a small fraction of all possible reactions. Along these same lines,
Kauffman?* later modeled the problem in terms of random graphs, and showed that
under reasonable assumptions the probability of catalytic closure is quite high.[
The random graph model was developed into a kinetic model that could be sirnu-
lated on a computer by Farmer et al.*! This line of investigation, which attempts to
find possible precursors facilitating the emergence of life should be contrasted with

[iAn exception is provided by the experiments of Sidney Fox, who by heating a mixture of
amino acides demonstrated the formation of polypeptides, called proteinoids.2¢?? The structure
of proteinoids is not random; some subsequences, such as certain hexapeptides, occur much more
frequently than others. In contrast, our goal is to increase the concentration of entire molecules,
so that it is several orders of magnitude above equilibrium.

[2] Another toy model investigating the possibility that a metabolism might have spontaneously
emerged without a replicator is due to Dyson.®
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other work that addresses the (also very interesting) question of the early evolution
of life once replication has already begun.h103

In this paper we study the behavior of a network of catalyzed chemical reactions,
along the lines laid out by Farmer et al.'* We make several enhancements of the
model and analytically study a few simple cases to gain better intuition about the
dynamics. We also improve the simulation so that it is several orders of magnitude
faster. This allows us to simulate the kinetics of a complicated reaction network in
a matter of seconds. As a result, we are able to widely explore the parameter space
and answer many of the questions originally raised in earlier papers.

Our main result is that, under appropriate conditions, a catalytic reaction net-
work can focus most the material of its environment into a few chemical species. For
this to happen the system must be driven the appropriate distance from equilib-
rium, polymerization must be favored, and it must have diverse kinetic parameters.
Favoring polymerization may require the addition of enexgy, for example, through
pyrophosphates energized by light. In spite of these restrictions, there is a wide
range of parameters in which the material of the system is focused into only a few
species, which dominate over the background.

Focusing radically alters the material composition of the environment. The
species that emerge reinforce each others’ production and largely take over the re-
action vessel, excluding other possibilities. Since this behavior is analogous to that
of 2 metabolism, we call the resulting set of species and reactions an autocatalyiic
metabolism. Under appropriate conditions autocatalytic metabolisms can evolve
out of a simple, undifferentiated initial state, generating a sequence of complex,
highly differentiated, final states. Like contemporary organisms, these final states
are composed of a highly focused, specific set of long polymers. While the autocat-
alytic metabolism does not replicate itself in the usual sense, it propagates itself
by taking over any medium with suitable properties, sustaining itself as long as the
appropriate conditions are met. Furthermore, it may generate a lineage of related
autocatalytic metabolisms.

The mode] that we study here applies to any system in which polymers can
catalyze the formation of other polymers through cleavage and condensation reac-
tions. If the basic building blocks are amino acids, then the polymers are called
polypeptides or proteins. Such reactions are common among proteins, forming the
basis for many of the functions of living organisms. If the basic building blocks
are nucleotides, then the polymers are called nucleic acids (RNA or DNA). It is
well known that polypeptides possess a large repertoire of catalytic activities of
this type; the recent discovery of specific catalysis reactions in RNA suggests that
nucleic acids may also possess the necessary properties.” Whether the polymers are
polypeptides or nucleic acids changes the parameters but not the basic form of the
model.

Even if the model we discuss here has nothing to do with the actual arigin of
life on earth, it might provide a possible origin of life in the laboratory. Although at
present we cannot predict the outcome of experiments in detail, we can make qual-
itative predictions that provide broader experimental guidelines. The accumulation
of more experimental knowledge can be used to determine the unknown parameters

Spontaneous Emergence of a Metabolism 97

of our model, which in turn should sharpen its predictive value for experiments.
Although many important experimental details are still unknown, and some impor-
tant questions awailt further study, our numerical simulations suggest that it may
be possible to synthesize autocatalytic metabolisms in the laboratory.

1.2 NONTRIVIAL DISSIPATIVE STRUCTURES

The problem of the emergence of life 18 embedded in the broader problem of un-
derstanding self-organizing phenomena, which from the point of view of a physicist
may be more interesting anyway. Many non-living systems exhibit self-organizing
properties, albeit much weaker than those of living systems. Is there a sharp distinc-
tion between living and nonliving systems? Or can there exist levels of arganization
that are between those of present living and non-living systems? Can evolution and
other self-organizing properties of living systems be viewed as manifestations of a
general law that describes the tendencies of matter to organize itself?

There are many simple examples that have been cited as instances of self-
organizing phenomena in nature. For example, when a fluid is heated from below,
under appropriate conditions, paiterns of convection cells form. The macroscopic
structure of these cells is internally generated by the system itself, and is not ap-
parent in its initial conditions. Such patterns are often called dissipative structures,
because they occur when energy flows into a system and then is dissipated .32

Several researchers have asserted that life is a non-equilibrium phenomenon,
associated with dissipative structures.3? This is certainly true, but it is a very weak
statement. While deviation from equilibrium is a necessary condition for life, it is
far from sufficient. Driving a system away from equilibrium does not necessarily
cause the emergence of order—in fact, it often has precisely the opposite effect. A
central question that must be addressed in a theory of selforganizing phenomena
is: Why do some non-equilibrium situations foster the spontaneous emergence of
organization, while others do not?

There is a big gap between the dissipative structures of simple non-living sys-
tems, such as patterns in fluid convection, and the much richer dissipative structures
associated with living systems. The model discussed here is intended to bridge this
gap, at least to some extent, by showing the possibility for dissipative structures
that are intermediate in complexity between living and non-living systems. Au-
tocatalytic metabolisms are more complex than convection patterns, in that they
propagate specific information through time. One autocatalytic metabolism can
seed the formation of another, similar metabolism. The autocatalytic metabolisms
of this model can be viewed as proto-life forms, since they have a metabolism, they
evolve and store information, and they reproduce (although more continuously and
with less fidelity than contemporary organisms). They are also dynamically stable,
and so capable of self-repair. They, thus, have many of the essential properties of
living systems, albeit in a much less sophisticated form.

Besides demonstrating the possibility for the spontaneous generation of auto-
catalytic metabolisms, one of cur main purposes in this paper is to discover under
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what conditions they can be expected to form. How does their formation depend on
the parameters of the system, such as the flow of energy, or the inherent diversity
of the underlying dynamics? Although our results are specific to this model, they
nonetheless suggest several rules that may pertain to the more general problem of
self-organization.

1.3 A SIMPLE MODEL FOR STUDYING EVOLUTION WITH AN EMERGENT
NOTION OF FITNESS

In principle, it is possible to describe biological systems at a fundamental level in
terms of their dynamics. At this level of description, “selection” is an emergent
property of the dynamics. In practice, however, for most systems this is hopelessly
intractable, As a result, studies of evolution are typically couched in terms of the
fitness function, which is an empirical construct, disconnected from the laws of
physics. Even so, in most systems the fitness function is known only in very special
circumstances where all but a few relevant factors are neglected. In general, fitness is
a complicated function of the external environment, which includes other organisms.
As a result, most theoretical models for evolution make many ad hoc assumptions,
postulating fitness functions that may be qualitatively different from those in the
real world.

As pointed out by Eigen,'© Réssler,®” and others, chemistry provides an ex-
cellent forum for studying evolution. The laws of chemical kinetics are well under-
stood, and make it possible to model the behavior of the system at a fundamental
level. These laws determine population levels and therefore determine fitness. As
in biological systems, fluctuations are always present, generating random variation.
Thus, for chemical networks we can describe the fitness at the fundamental level of
dynamics.

Even though autocatalytic metabolisms do not have templates or a genetic
code, because of their specificity they are nonetheless capable of evolution. This
is discussed in a companion paper.? Autocatalytic metabolisis, therefore, provide
an interesting alternative for studying evolution in a chemical setting. It is also
interesting to note that autocatalytic structures analogous to those we study here
occur spontaneously in more abstract environments, as observed by Fontana!®!?
and Rasmussen et al.3®

2. BACKGROUND

In this section we discuss some of the properties of catalyzed reaction networks,
providing a background for the development of the simulation in Section 3. We
discuss the reactions we are going to consider, and show why they are uninteresting
at equilibrium. We then explain how the situation is altered as we move away from
equilibrium, and how catalysis can play an important role in focusing the material
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of the system into just a few chemical species. We define autocatalytic sets and the
related notion of autocatalytic metabolisms.

2.1 SPONTANEOUS REACTIONS

We are interested in reversible polymerization reactions, in which two polymers
either condense to form a single longer polymer, or a single polymer cleaves into
two shorter polymers. Cleavage and condensation can be considered together as a
single reversible reaction. The reaction in which polymers A and B join together
to form C, giving off water, or equivalently, in which ' hydrolyzes into 4 and B,
can be written

A+B=C+H, (1)

where H represents water.

Providing the concentrations are sufficiently high and the solution is well stirred,
the law of mass action provides a good approximation of the kinetics. Let & be the
rate constant for the forward reaction, A+ B — C+ H, and k; be the rate constant
for the backward reaction C' + H — A + B. The rate equation for € is then

. dl
C:E:kaB—k,HC. (2)
For convenience, whenever the meaning is unambiguous, we use the same symbol

to represent both a polymer and its concentration. Similar equations apply for A
and B.

2.2 EQUILIBRIUM DISTRIBUTION OF POLYMERS

At equilibrium the concentrations of the polymers of a given length can be computed
analytically using the classical theory of polycondensation reactions developed by
Flory and Stockmayer.1%%%% For simplicity we assume that all the reactions have
the same forward and backward rale constants, and that the reaction vessel is
well stirred. Furthermore, we assume that the monomers axe oriented so that each
monomer has two sites, which we arbritrarily designate as the “--” site and “-”
site.

We follow the treatment of Macken and Perelson.?” Rather than solving for the
concentrations of each polymer, it is more convenient to use an aggregate variable
y, which is the concentration of free sites of a given kind (either “+” or “~’). We
assume that the polymers are unbranched, and that they cannot form rings. For
reactions of the form of Eq. (2),

:!}= _kfyz+kr(m0—y)H: (3)

ol T Eo G (0
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where my is the total concentration of monomers, which is equal to the concent.ra—
tion of free sites if nothing is bound. At steady state = 0 and the concentration

of free sites is
(1 +4Ey0)1/2 -1
y =

2% !
where & == ky/Hk, is the equilibrium constant.
We now compute the concentration of polymers of length n. At equilibrium, let
p be the probability for the formation of a bond. This is the ratio of bound sites to
the total number of sites, 1.e.,

(4)

Yo
Assume that each binding event is independent. For a given free site, the probability
that it is attached to n — 1 bonds followed by another free site is p"7'(1 -~ p).
Solving Eq. (5) for y shows that the concentration of free sites for a given value of
p is y = ma(l — p). Thus, the concentration of polymers of length n is

z, = mo(l —p)Pp" L. (6)
At equilibrium, inserting Eq. (4) into Eq. (5) gives

(1 + drmo) /2 —1
N Q!f,mg ’

p=1 (M
Note that p < 1. Thus, Eq. (6) implies that the concentration of polymers of length
n decreases exponentially with n, at a rate that depends only on the product of
the equilibrium constant and the concentration of monomers. In a system with
m distinct monomers, present initially at equal concentrations, the concentration
of any particular polymer species of length n is further decreased by a factor of
m™™ For m > 1, even if p = 1, so that polymerization is favored, for large n the
concentration of any particular species is quite small. For example, for polypeptides
m = 20; the concentration of a polypeptide of length n = 30 is roughly 2072 less
than that of a monomer. For a container of finite size, this implies that, except for
occasional fluctuations, most longer species are not present.

2.3 CATALYZED REACTIONS

The presence of a catalyst (enzyme) E can accelerate a reaction.

A+B2C+H. (8)

At equilibrium the rate of the forward reaction equals that of the backward reac-
tion, so that A = B = € = 0. Catalysis speeds up the rate at which the system
approaches equilibrium, but does not change the concentrations at equilibriam.
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However, when the reaction is driven away from equilibrium, for example by ex-
ternally supplying one of the participants in the reaction, catalysis can shift the
steady state. This is the basis for the effect we study here.

Catalysis increases both the forward and backward rate constants by the same
amount. This can be taken into account by defining a quantity » that we call the
catelytic efficiency. For fixed concentration of the reactants, the increase in the
velocity of the reaction is proportional to the product of  and the concentration
E of the catalyst. The kinetic equation for C can be crudely approximated as

C =(1+vE) (ks AB — k, HC). (9)

Similar equations apply to A and B. When the catalytic efficiency v = 0, this
reduces to the kinetic equation for a spontaneous reaction.

Note that, for a population of polymers, this reaction is just one reaction in a
network of many. A given polymer may play the role of A in some reactions, and
the ole of C' in others. To compute the rate of production of any given species, it
is necessary to sum all the relevant reaction terms.

The approximation made in Eq. (9) neglects the effect of saturation, which
comes about because the enzyme and the reactants are bound together for a finite
time. During this time they cannot participate in new reactions, which lowers the
effective reaction rates. If this is a dominant effect, so that most of the enzyme
or product is bound at any given time, the reaction is saturaied. To take this into
account we do not use Eq. (9), but rather use a more accurate approximation. We
keep track of the concentration of any given species z; that is bound into complexes
through an auwxiliary variable 7;, which is equal to the sum of the concentrations of
all the complexes in which #; is bound. To keep the simulation tractable, we assume
that all complexes unbind at the same rate k,. This approximation is described in
more detail in the Appendix.

2.4 DRIVING FROM EQUILIBRIUM

To make anything interesting happen in a reaction network it must be driven away
from equilibrium. In this model we investigate two different mechanisms. The first
involves a flux of mass, and the second involves the formation of energetic pyrophos-
phate molecules, driven by light.

241 MASS FLOW We model a reaction vessel with a steady input flux of monomers
or short polymers, and an output flux due either to diffusion or overflow of the
reaction vessel. This might correspond to a prebiotic environment, or it might cor-
respond to a chemostat in a laboratory experiment. The chemical species that are
input are collectively called the food sef. For simplicity, we assume an inflow rate §
of concentration per unit time, and an outflow that is proportional to concentration,
with rate constant K.
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Tor an element of the food set, the kinetic equations are of the form

d:l:i

v by - Z(reaction terms) -+ 6 — Ky, (10)
d;i = ~k, T + E(reaction terms) — KT;. (11)

The (reaction terms) are defined in the appendix in the discussion following Eq.
(25). For a species outside the food set, the kinetic equations are of the same form,
except that § = 0. There is a net flow of mass from the food set to the other
elements of the system, which drives it away from equilibrium.

Becanse the reaction terms conserve mass, the total mass in the reaction vessel
always goes to a fixed point, independent of initial concentrations. To see this, note
that only the last two terms in Eq. (10) and the last term in Eq. (11) change the
total mass. The total mass concentration is proportional tol¥l m = Y, n(i)z;, where
n(i) is the length of the ith species. Letting Ny be the number of elements in the
food set, the rate of change of the total mass concentration is given by a simple

differential equation,
dm

E:Nfé—Km, (12)
which has a global fixed point mq = Ny/K$é. This means the initial mass is irrel-
evant anyway, and so for convenience in our simulations, we choose m(0) = mq.
Thus, there are effectively only two parameters relating to the flow of mass through
the system, which can be § and K, or equivalently § and mg.

Since § and K are not intuitively easy to interpret, it is sometimes useful to
quote tesults in terms of the mean reaction number v. This is defined as the mean
number of times a given monomer participates in a reaction, on average, from the
time it enters the vesse] until the time it is fiushed out. At equilibriurm » is infinite,
and when the other parameters are fixed, it decreases monotonically as 6 increases.

2.4.2 PYROPHOSPHATES As we demonstrate in subsection 2.6, catalytic focusing
requires conditions that favor polymerization. The tendency to polymerize can be
enhanced by an appropriate input of energy. The mechanism that we investigate
here involves pyrophosphate molecules, which play a role analogous to that of AT P
in contemporary organisms. This mechanism is supported by early experiments. 3%
The detailed sequence of reactions was suggested by Ron Fox,[*] and is illustrated
in Table 1.

It proceeds as follows: Light causes the formation of pyrophosphate molecules
(pa), which is balanced by hydrolysis. When a pyrophosphate molecule binds to
polymer A, it creates the energized form A* and releases a phosphate atom in the

3] To convert this to units of mass/volume there is a constant of proportionality, that depends on
the mass of a monomer.

[4lPrivate communication.
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TABLE 1 Pyrophosphate energizes and enhances polymeri-
zation. The first column lists the reactions and the second
column the reaction rate. + represents a photon (and in the
column on the right represents the intensity of light), p a phos-
phate atom, and A water. A and B represent the polymers
that condense to form C. FE is the catalyst. A bar indicates
a complex that is bound to the enzyme E. k; Is the rate
constant for polymerization, k. for hydrolysis, k., for the dis-
sogiation of the bound complex, k. for the polymerization of
phosphate, and k, for the activation of a polymer. Activated
polymers are indicated with a "** superscript. k} is the rate
constant for the condensation of an activated polymer with
another polymer.

Reaction Rate
2p L p+H koyp?
P2+ HC -  2p k.poH
A+p2 - A* +p koApz
A"+ H — A+p b A*H
A*+B+E - CE+p k}vEA*B

process. A* may hydrolyze, releasing the other phosphate atom, or it can bind to
another polymer B (in the presence of the catalyst ). This occurs with a rate
constant k}, which is greater than the unenergized rate constant k7. Thus, the
addition of energy favors polymerization.

Based on simulations involving the full reaction scheme shown in Table 1, we
found that when the concentration of pyrophosphate and the input of light are
sufficiently high, the behavior is roughly equivalent to that obtained by simply
using the equations given in the Appendix, with the effective forward rate constant
equal to k¥. For convenience, in the numerical experiments described here we simply
assume that the parameters quoted correspond to k%, and use the simpler equations
which do not involve pyrophosphate.

2.5 REACTION GRAPH

Each distinct monomer can be assigned a character from a fixed alphabet, a, b, Cyeene
A polymer can then be represented as a character string, for example (acabbache . . ).
We assume that the polymers are oriented, so that abe and cba are different strings.
The topological structure of a network of reactions, each of the form of Eq. (8),
can be represented as a polygraph with two types of nodes and two types of
connections,!! as illustrated in Figures 1 and 2. One type of node represents the
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polymer species and is labeled by the corresponding string. The other type of node
represents the catalyzed reaction and is labeled by a black dot. The polymers that
participate in a reaction are connected to the corresponding reaction node by re-
action links (black arrows), which point in the direction of condensation. Each
polymer is connected to the reactions it catalyzes by a catalytic link (dotted line).
Each reaction has at least four links: three reaction links, and one or more catalytic

links.

2.6 CATALYTIC FOCUSING

Under appropriate conditions catalysis can focus most of the material of a reaction
network into only a few species. The basic idea can be grasped by considering the
simple reaction network

E
ba+H = a+b = ab+ H,

as shown in Figure 1. Assume a and b are supplied at rate §, and diffuse out of
the container with rate constant K, as described in subsection 2.4. For simplicity,
assume the concentrations of F and H are maintained at fixed values. Neglecting
saturation, according to the approximation of Eq. (9), the rates of change of ab and
ba are

[a] = (ks 1a]l}) — k- Hlab]) - Klab], (13)
lba] = kyla]lb] — k- Hlba] - Kba], (14)

where [ab] is the concentration of polymer ab. Setting the derivatives to zero and
using the mass conservation condition of Eq. (12) gives

[ab] 1473
Shkves )

B = §/mok. H is a dimensionless parameter related to the deviation from equilib-
rium, where mg = a(0) + b(0) is the total concentration of monomers. Note that
B> 0.v=1+4VE is a dimensionless parameter that characterizes the strength of
catalysis. v > 1, and ¥ = 1 corresponds to an uncatalyzed reaction.

Under what circumstances is the concentration of eb much greater than that
of ba? At equilibrium # = 0 and the ratio of [ab] to [ba] is one. This ratio can
become large only when 8 3» 0, ie., only when the system is driven well away
from equilibrivm. When 2 3» - this ratio approaches y; when 3 < ¥ it approaches
3. Thus, by varying v and @ the concentration of ab relative to ba can be made
arbitrarily large.
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N

FIGURE 1 A simple network illustrating how steady-state concentration can be
boosted by catalytic activity. « and & are driven at a fixed rate §, and the enzyme E
is maintained at a fixed concentration.

L @b

Note that the ability to focus comes about because the formation of one species
is catalyzed, while that of the other is not. I all reactions were catalyzed equally,
with equal kinetic parameters, there would be no focusing; the concentration of
ab would equal that of ba. Focusing thus requires specific catalysis, in which some
reactions are catalyzed more strongly than others.

2.7 AUTOCATALYTIC SETS AND METABOLISMS

’I"o achieve catalytic focusing the enzyme F must be maintained at high concentra-
tion. .One.wa.y for the systern to accomplish this by itself is through an autocatalytic
reactlon, in which one of the products catalyzes its own formation. A simple exam-
ple is

c
A+B = C+H. (16)

If we set C'= ab = £ in reaction (13), then the enzyme is produced automatically,
and the focusing maintains itself.

Simple autocatalytic reactions such as reaction (16) are obviously very special.
A more common situation occurs when autocatalysis involves a cooperation between
reactions, in which one species catalyzes the formation of another. An autocetalytic
set Is defined as a set of chemical species such that each member of the set is
produced by at least one catalyzed reaction involving only members of the set.
This notion was introduced by Calvin,® EBigen,!® Kauffman,?® and Réssler.3? Since
the reactions we are considering are reversible, a species can be produced either by
cleavage or condensation. Thus reaction (16) is an autocatalytic set, and so is

A
A+B=C+H. (17)
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sasbabbaab

aabab

ab aababbaab

4 )

baabasb
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wt

baabbasbabbaab

baabaabb

FIGURE 2 An autocatalytic netwerk consisting of 15 species. The monomers a and
b, which are circled, comprise the food set. Character strings represent the polymers.
The fat dots represent reaction nodes. The arrows connecting the reactants to the
nodes are reaction links and point in the direction of condensation. The broken lines
connecting polymer species to reactions are catalytic links, indicating which species
catalyze which reactions.

A more complicated (and more typical) autocatalytic set is shown in Figure
2. This network happens to have one catalytic link per reaction, a rather special
property. We will use this reaction network, or variants with more catalytic links,
for many of our numerical experiments. Note that autocatalytic sets may contain
other autocatalytic sets as subsets.

Using the random graph model described in the next section, Kauffrnan®t
showed that for any given probability of catalysis, if the food set is sufficiently
large, the resulting graph will almost always have an antocatalytic set. This result
is encouraging, since it suggests that autocatalytic sets exist under fairly reasonable
conditions. We must emphasize, however, that the presence of an antocatalytic set
in a reaction network, in and of itself, does not imply that there will be any in-
teresting departures from equilibrium behavior. To achieve catalytic focusing it is
critical that the kinetic parameters are favorable. Thus the graph-theoretic notion
of an autocatalytic set is a necessary but not a sufficient condition.
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To make this distinction, we define an autocatalylic metabolism as an autocat-
alytic set whose concentrations make significant departures from the values they
would have if none of the reactions were catalyzed. The phrase “significant depar-
tures” is subjective, and is admittedly rather vague. However, from an operational
point of view, in our simulations we often see a clear distinction between autocat-
alytic seis that can function as metabolisms and those that cannot, as shown in
Section 8.

3. SIMULATION

In principle the kinetic equations are all we need to know in order to simulate the
behavior of a reaction network. In practice, however, there are two major problems:
The first is that the kinetic parameters cannot be determined from first principles.
To deal with this we construct an artificial chemistry, as discussed in subsection 3.1.
The second problem is that there are an infinite number of possible reactions, and
it is intractable to solve all of them; we must focus our computational resources on
only the most relevant ones. Our method for doing this is discussed in subsection
3.2.

3.1 ARTIFICIAL CHEMISTRY

In areal chemical system the efficiencies and rate constants of the reactions depend
on detailed properties of chemical composition, as well as on thermodynamic pa-
rameters such as temperature and pressure. While a computation of these constants
from quantum mechanics and statistical mechanics is possible in principle, from a
practical point of view, at this peint in time it is hopelessly intractable.

To circumvent this problem, the approach introduced by Kauffman,*
Farmer et al.,'’'? and Bagley et al.? is to invent an artificial chemistry, a set of
rules stating which catalyzed reactions oceur, and with what strength. An artificial
chemistry cannot reproduce the behavior of a real chemistry in detail, but it may
reproduce many of the correct qualitative properties. An artificial chemistry can
produce complex behavior, even though it is simple from a calculational point of
view. By exploring different artificial chemistries, we can discover which properties
cause significant changes in behavior, and which do not. We can begin with simple
chemistries and move toward more complex chemistries, adding layers of realism as
needed. The knowledge gained in this way can be useful in guiding experimental
investigations of real systems, by pinpointing the essential quantities that need to
be measured in experiments in order to make the model more realistic.

Since our primary interest is in understanding the effect of catalysis, we first
address the problem of assigning a catalytic efficiency to each reaction. We do this
using two different methods. In the first, we construct a completely disordered arti-
ficial chemistry, by assigning catalytic efficiencies at random, and in the second, we
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construct a highly ordered artificial chemistry, assigning them with a string match-
ing algorithm. The random method is more disordered than real chemistry, and
the string matching method is more regular than real chemistry. From a qualita-
tive point of view, we hope that real chemistry lies somewhere between these two
extremes.

To be strictly correct, every possible reaction should be included in the reaction
graph. However, in practice the reaction graph must be trimmed, so that computa-
tional resources are used only for the most essential reactions. We take advantage
of the fact that the vast majority of reactions are catalyzed only weakly and can
be treated essentially as spontaneous reactions. The graph represents only those re-
actions with sufficient catalytic efficiency to make them significantly different from
the corresponding spontaneous reactions. Thus, when we refer to a “catalyzed reac-
tion,” we mean a “strongly catalyzed reaction,” and when we refer to a spontanecus
reaction, we mean a “weakly catalyzed reaction.”

3.1.1 RANDOM ASSIGNMENT OF REACTIONS In some cases changing a single
monomer can have a dramatic effect on the chemical properties of a polymer, either
because it causes a drastic change in the configuration of the polymer or because it
alters the properties of a critical site. If this were always the case, then chemistry
would be random. For a random chemistry there is no correlation between chemical
formulas and chemical properties. This is unrealistic. However, it does have the
advantage of being easy to implement, and lies at one extreme in the space of all
possible chernistries.

Following Kauffman,?* we assurme that out of all possible spontaneous reactions,
only a fraction p are catalyzed with sufficient strength to be significantly different
from spontaneous reactions. The set of reactions that is catalyzed is chosen at
random. To see the basic idea, imagine creating a list of all possible catalyzed
reactions. For m distinct monomers the number of species of length n is m® the
number of possible spontaneous reactions is the order of m2® and the number of
possible catalyzed reactions is the order of m3™. The reactions that are strongly
catalyzed can be determined by flipping a biased coin that returns heads with
probability p. Reactions that receive heads are assigned a non-zero value of v, and
all others are assigned v = 0. The random rule generates an ensemble of possible
chemistries, corresponding to all possible sequences of random choices.

Operationally the procedure described above would be very time consuming,
since m®® can be a very large number. It can be made much more efficient by
decomposing the problem properly, focusing attention only on reactions involving
species that are already present in the reaction vessel, and taking care to avoid
double counting, as described by Farmer et al.11

To determine catalytic efficiencies, one simple possibility is to set v = constant,
so that all the reactions on the graph are catalyzed with the same efficiency. Another
natural possibility is to choose the catalytic efficiencies at random according to a
given probability distribution, for example by making the probability of a given
efficlency uniform within given maximum and minimum values. We employ both of
these in our simulations.
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3.1.2 ASSIGNMENT OF REACTIONS BY STRING MATCHING The match rule pro-
vides an alternative artificial chemistry that is probably closer to real chemistry
than the random rule discussed above. It lies at the opposite extreme—while the
random rule is too disordered, the match rule is probably too ordered. For the
match rule, changing a single monomer in a given polymer only causes a small
change in its chemical properties. Two similar polymer strings always have similar
chemical properties. The match rule assumes that the information contained in the
string of a given polymer contains all the information needed to specify its chemical
properties.

We roughly follow the approach used to model the immune system by Farmer
et al.'? For convenience, in this discussion we assume a two-letter alphabet con-
sisting of @ and b, although the rule is easily generalized to a larger alphabet. The
two reactants A and B in Eq. (8) join together to form C The character string
corresponding to €' is matched against that of enzyme E. There are several possible
alignments; we require that the string E span the binding site between 4 and B.
Each allowed alignment of E' against C' is given a match score according to the
number of complementary matches, i.e., the number of cases where an “a” is paired
against a “b.” We then compute the probability P that a score as good or better
would be obtained if the strings E and C were generated at random. We use this
to define a quantity we call the specificity s = 1/P. The catalytic efficiency depends
on the specificity through a function »(s). We typically assume that high specificity
corresponds to higher catalytic efficiency, and choose »(s) to be linear. For a given
choice of A, B, and F, the total catalytic efficiency is the sum of the efficiencies
computed for each of the allowed alignments. For a more detailed description, see
Bagley.?

The match rule assigns a catalytic efficiency to every possible catalyzed reac-
tion. The reactions with catalytic efficiencies above a given threshold vy are installed
in the reaction graph. The match rule is completely deterministic, and generates
a unique chemistry. The requirement that the specificity exceed a fixed threshold
implies that very short polymers cannot participate in catalyzed reactions. Thus,
the properties of the match rule are quite different from those of the random rule.

At this point we have studied the random rule more thoroughly than the match
rule. We intend to present results using the match rale in a future paper.

3.1.3 OTHER KINETIC PARAMETERS The other relevant kinetic parameters that
tnay vary from reaction to reaction are the forward reaction rate & 7, the backward
reaction rate k., and the unbinding constant &,. In order to use the approximation
for the saturation problem described in the Appendix, it is necessary that k, be the
same for all reactions. Since we can vary the catalytic efficiency for each individual
reaction, this is not a serious problem.

'The rate constants k; and k. play an important role. At equilibrium diverse
rate constants cause the polymers of a given length to have nonuniform concentra-
tions. However, since to first approximation the rate constants only depend on the
two monomers at the binding site, the resulting nonuniformities in the concentra-
tion profile are much more regular and less pronounced than those resulting from
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catalytic focusing. For convenience we typically assurne that %y and k. are the same
for all reactions, although in some cases we also vary them randomly.

3.2 METADYNAMICS

The number of possible reactions is infinite. Of course, in reality only a finite number
are important. Unfortunately, it is usually impossible to state in advance which
reactions can be neglected. A metadynamical simulation attempts to solve this
problem by restricting attention to a variable set of reactions and chemical species,
and adding or deleting as needed.

The problem of determining the essential reactions is particularly severe for
polymer chemistry, where the number of possible reactions grows exponentially
with the length of the polymers. For m = 20 and »n = 10, for example, there are
already more than Avogadro’s number of possible catalyzed reactions. Even if we
knew the rate constants for every reaction, we could never hope to keep track of all
of them in a computer simulation.

A real chemostat only contains a finite number of molecules and hence a fi-
nite number of species, with a finite number of possible reactions between them.
Continuous differential equations fail to exploit this. Suppose, for example, that at
t = ¢ all the concentration is placed in a few species, and the concentrations of the
rest are set to zero. According to the laws of continuous kinetics, for ¢ > ( there are
generically an infinite number of species with non-zero concentrations. This unre-
alistic result comes from the approximation made in treating a discrete population
of molecules as though it were continuous. This is equivalent to the assurmption of
a well-stirred reaction vessel with infinite volume. For the problem that we address
here, the fact that the reaction vessel is finite is of critical importance.

One solution to this problem is to treat the kinetics as a random process, us-
ing integer populations and simulating molecular collisions through Monte Carlo
techniques. This methed is efficient when the populations are low, but is compu-
tationally inefficient when the populations are high. If the population is 105 for
example, a differential equation solver might change the concentration by as much
as one percent in a single step and still retain reasonable accuracy, while the same
change with a stochastic simulator requires 107 steps.

The metadynamics approach offers an alternative that is computationally more
efficient, when there is a wide disparity in population size.>**1? At any given time
the reaction network is modeled by a finite set of continuous differential equations,
representing the dominant reactions. Fhe topological structure of this set of differ-
ential equations is represented as a graph containing only species that are either
present in the reactor, or that can be produced by other species present in the
reactor. As the concentrations change the dominant species and reactions may also
change. The graph is changed to reflect this, which in turn changes the differen-
tial equations. The dynamies occur on two time scales, the faster time scale of the
differential equations and the slower time scale for changing the graph. A typical
example of a metadynamics simulation is shown in Figure 3.
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FIGURE 3 A typical metadynamics simulation. The logarithm of the concentration

of each species fs plotted against the logarithm of time. Initially only the four food

set species a, b, ab and ba have non-zero concentration. Catalyzed reactions within
the focd set produce new species, which in turn have more catalyzed reactions. At

the point where we begin the graph at ¢ = 100, four new species have appeared,

so there are a total of eight polymer species. Each new species can be seen

appearing at the bottom of the graph as it crosses above the threshold. The system
eventually approaches a steady state solution with 22 species above the threshold. The
parameters are the same for all reactions, and are ky = 10% k. = 10, » = 104

by =10 H=1,6 =102 and mp = 3.

To take into account the fact that the container is finite, we impose a concen-
tration threshold corresponding to the presence of a single molecule. If the concen-
tration of a given species is significantly below this threshold, then that species is
unlikely to be present. Therefore it cannot participate in reactions that produce
other new species, and these reactions can be safely ignored. We only include re-
actions between species that are above threshold. They may produce new species,
which rise above threshold; when this happens the new species are installed in the
graph and allowed to catalyze new reactions. Similarly, species that were formerly
above threshold may fall below it and be removed.
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Since the number of species with concentrations above threshold at any given
time is finite, the graph is also finite. Adjusting the threshold makes it possible to
keep the graph from becoming unmanageably large—smaller reaction vessels have
higher concentration thresholds, corresponding to smaller graphs. By making the
reaction vessel sufficiently small, we can insure that the graph has less than a given
number of elements. We typically strive to simulate a container that is roughly the
size of a bacterium, although because of limitations in computer resources we are
often forced to use smaller containers.

In our simulations the system always approaches a unique fixed point. This
appears to be true independent of the way we model the reactions, i.e., whether or
not we account for saturation or whether or not we include pyrophosphates. This
suggests that there is a Lyapunov function for catalyzed kinetic equations in this
class. B!

We are able to speed up our sirnulations by several orders of magnitude by
assuming the existence of a unique fixed point, which implies that the steady-state
deterministic equations can be solved algebraically. We call the fixed point for any
given set of differential equations a dynemical fired point. The metadynamical sim-
ulation is simplified as follows: We find the dynamical fixed point of the current set
of differential equations. We then examine it and check o see whether any species
have moved above or below threshold in comparison to the previous dynamical
fixed point. If so, we change the differential equations accordingly and find a new
dynamical fixed point, and repeat the process. Eventually there are no changes
compared to threshold and this procedure stops. We call the final dynamical fixed
point the meiedynamical fixed point. By reducing the metadynamics to a sequence
of algebraic operations, on a typical workstation a simulation such as that of Figure
3 is compressed into a few seconds.

Note that although the deterministic simulation described above always reaches
a metadynamical fixed point, once we reincorporate the stochastic effects of sponta-
neous reactions, the system may hop between many different metadynamical fixed
points and the long-term dynamiecs become quite interesting. This is the basis for
our claim that autocatalytic metabolisms can evolve, and is discussed in more detail
in a companion paper.?

3.3 THE BACKGROUND OF UNCATALYZED REACTIONS

Restricting attention solely to the reaction graph is a good assumption as long as the
reactions on the graph dominate over everything else. This is not always the case.
For example, spontaneous reactions always dominate near equilibrium. To study
the competition between catalyzed and spontaneous reactions, the spontaneous
reactions must be taken into account, at least as an aggregate.

[8]These equations are reversible, which makes them different from many other autocatalytic
equations that are known to display limit cycles, chaos, and hysteresis.
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For the purposes of this discussion it is convenient to divide the chemjcal species
into those of the catalytic network and those of the background, which are produced
only by spontaneous reactions. This is illustrated in Figure 4. The shadow is a spe-
cial subset of the background, consisting of species that can be directly produced by
reactions involving only members of the reaction network. In a situation where the

FI(':_.‘UP.E 4 The "mandala” of polymer species. The catalytic network, shown with
white letters on biack ovals, includes the food set, but also consists of other species
produced by catalytic reactions. There must be a continuous path in the corresponding
graph of catalyzed reactions from members of the food set to each member of the
catalyzed network; furthermore, the concentration must be above a concentration
threshold corresponding to the presence of a single molecule. The background consists
of everything that is not in the catalytic network. The shadow, shown by white lefters
on a grey background, is a special subset of the background, consisting of species that

can be produced by a spontaneous reaction involving only themselves and members of
the catalytic network.
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concentrations of the reaction network are high, the shadow plays a special role
because it is maintained at concentrations above the rest of the background. The
shadow is in this sense similar to Eigen’s quasi-species.?

For clarity we will first discuss the problem of modeling spontaneous reactions
alone, without catalyzed reactions, and then return to discuss the case when spon-
taneous reactions are in competition with catalyzed reactions.

The difficulty of modeling spontaneous reactions comes about hecanse there
are so many of them. To make the problem tractable, we assuine that all reactions
have the same forward and backward rate constants &y and &,. The problem is then
equivalent to that of modeling the spontaneous reactions in a system with only one
distinct type of monomer (m = 1). We can lump together all polymers of a given
length n, adding together their concentrations to get a combined concentration s,.
The allowed reactions are of the form

8i+ s;=2sp + H. (18)

A reaction is only possible if 7 + § = k. The contributions to the kinetics are
now described in the order that the corresponding terms appear in Eq. {19): s
receives contributions from condensation reactions between sialler species and from
cleavages of longer species. It loses to condensations between polymers of length &
and polymers of other lengths, as well as to cleavages of itself. If there are polymers
of length & that are part of the food set, s; will also gain from external driving.
The resulting rate equation for s is

-C;s—tk = ky E 5i5; —ky Z(n—-k+1)sn—kfsk Zm’sj—k,(k—l)sk+nk§sk—Ksk,
i+j=k n>k =1

(19)

where § = 0 if k is outside the food set, and nj is the number of elements of length

k in the food set. For an alphabet of m monomers, with the assumption of uniform

reaction rates, the concentration computed above is divided evenly among all the
species present. It is s
k

ap = W (20)

We now outline our approach for treating the competition between spontaneous

and catalyzed reactions: Let s; now represent the sum of the concentrations of the

polymer species of length k, excluding the catalytic network. The dynamics of the

background due to its interactions with itself can still be taken into account by

equations of the form of Eq. (18). However, the concentration for a single species

is now defined to be 5
= — 21
dg (mk — lk)l ( )
where [; is the number of elements of the catalytic network of length k. The cou-
pling to the autocatalytic set can be taken into account by carefully counting all
of the interactions. The members of the catalytic network contribute to the spon-
taneous background through their condensation and cleavage reactions. Similarly,
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they receive concentration from the spontaneouns background. The only approxima-
tion necessary comes from the assumption that all the elements of the background
have the same concentration. This is not strictly true. In particular, the concen-
trations in the shadow are typically above those of the rest of the background.
However, this Is a second-order effect, and we feel that in most cases our simula-
tions are approximately correct. The problem of coupling the catalytic network to
the spontaneous background is discussed in more detail by Bagley.®

4. EMERGENCE

In this section we present simmilations of catalytic reaction networks under several
different conditions. We begin by demonstrating that, under appropriate circum-
stances, autocatalytic metabolisms emerge at concentrations that are several orders
of magnitude higher than those of the background. We explore the parameter de-
pendence and show that there is a range of parameter values where autocatalytic
metabolisms thrive,

4.1 DEPARTURE FROM EQUILIBRIUM

In Figure 5 we show a sequence of three simulations in which we drive the system
further away from equilibrium by increasing the parameter 6. In each case we let the
reaction vessel approach its steady-state behavior, and then plot the concentration
of all the polymers in the vessel of length less than twelve. In Figure 5(a) § = 0.01,
the mean reaction number r & 210, 000, and the system is nearly at equilibrinm. The
observed behavior is in gquantitative agreement with the predictions of subsection
2.2. The concentration falls off exponentially with length, all species of a given
length have the same concentration, and there is no interesting structure in the
concentration profile.

In Figure 5(b) § = 105 which corresponds to a mean reaction number of ap-
proximately 33. The concentrations of the catalyzed reaction network are orders of
magnitude above those of the background, and most of the mass of the system is
concentrated in the autocatalytic metabolism.

Finally, in Figure 5(c) we show the case when é = 1075, corresponding to a mean
reaction number of roughly 0.5. The dominance of the autocatalytic metabolism
is less evident—the flow of matter through the system is so high that the reaction
network has a much smaller effect on the composition of the system. This is hecause
the flow of mass through the system is so large that there is no time for a given
species to react before it is flushed from the system.

These simulations demonstrate the ambiguity of the word “non-equilibrium” in
this context. On one hand, the parameter & is a control parameter that can be used
to drive the system away from equilibrium. On the other hand, as demonstrated
in Figure 5, increasing é does not necessarily make the physical properties of the
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system deviate further from those at equilibrium. In terms of the non-uniformity
of the concentration profile, § = 10° produces a larger deviation from equilibrium
properties than § = 1075 The deviation from equilibrium properties is at a maxi-
mum when the driving away from equilibrium is finite. A flow of energy is needed
to move the system away from the structureless equilibrium state, but too large a
fiow of energy again results in a structureless state.

We have explored several quantitative measures of the deviation of the physi-
cal properties of the system from those at equilibrium. One of these is the steady-

FIGURE 5 Concentration
“landscapes” at different
displacements from equilibrium.

The two horizontal axes correspond
to the polymer species, arranged
concentrically with the shortest
polymers in the center, as in Figure
4. The vertical axis corresponds

to the logarithm (base 10) of the
concentration of each species. The
food set consists of the polymers a
and b, using a variation of the network
of Figure 2 with 118 catalytic links.
In(a) § = .01, and the system is
near equilibrium; the concentration
falls off exponentially with length but is
otherwise featureless. In (b) § = 10°
which gives the behavior that is most
distinct from that at equilibrium; in
this case the concentration of the
autocatalytic set is many orders of
magnitude above the corresponding
equilibrium values. Finally, in (c)

§ = 10™% and the system is so far
from equilibrium that it loses most

of its interesting structure. (Note

the change of scale in comparison
with (b).) The other parameters are
ky = 649 x 102 k, = 2.50,

v = 897 x 10% k, = 5.00 x 10%,
and my = 2.0.

e, &

-4

Lo d = 3
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state slope A of the concentration profile. Tn Figure 6 we plot the concentrations
of the species in the network as a function of their length and compare them with
the background, for a favorable set of parameters where the system exhibits an
autocatalytic metabolism.[®l The logarithm of concentration as a function of length
in Figure 6 gives roughly lines of slope A, indicating that the concentrations decrease
roughly exponentially with length. To measure A we use a least-mean-squares fit.
The longer polymers of the network are at much higher concentrations than those
of the background. Consequently, for the network A is much larger (less negative)
than that it is for the background. A thus provides a measure of the deviation from
the equilibrium profile.

In Figure 7 we plot A as a function of the mass flow 6. For small values of § the
system is near equilibrium, and A for the network is nearly equal to A for the back-
ground. As § increases A increases, reaches a maximum, and then decreases. Near
the maximum, A approaches zero, indicating the concentration profile is almost,
flat.

Langth 1

FIGURE 6 Mean concentration as a function of polymer length at steady state.

The solid line (N) corresponds to the network, the dotted line (B) corresponds to the
background, and the dashed line (E) corresponds to the equilibrium concentrations, The
simulation is performed for the network of Figure 2 with parameters k; = 6.49 x 102
kr =250, v = 8.97 x 105 k, = 5.00 x 10% 6§ = 1.79 x 10%, and my = 2.0.

[INote that this network has different parameters than those of Figure 5.
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FIGURE 7 The slope of the concentration profile vs. the mass flux §. (See Figure 6
for an example of a concentration profile.} The network (N} corresponds to the solid
curve, the background (B) to the dotfted curve, and equilibrium (E) to the dashed curve.
Parameters are the same as those for Figure 8, except that é is varied.

The mass concentrated in the metabolismn provides another natural measure
of the deviation of its properties relative to those at equilibrium. For example, in
Figure 8§ we plot the fraction of the mass in the background, the food set, and
the catalytic network (subtracting the food set), as a function of §. Theve is a
central regime where the majority of the mass of the system is concentrated in the
autocatalytic metabolism. Note that this regime overlaps with the regime where A
is large. However, the two are somewhat skewed; A peaks at roughly § = 102 while
the mass peaks when 6 > 10°

We feel that the need for a balanced energy flow for “interesting behavior”
reflects a general principle. Another possible example is the fact that life evolved
on Earth and not on Mercury or Pluto.

4.2 DEPENDENCE ON PARAMETERS

How special are the parameters for which autocatalytic metabolisms occur? To an-
swer this question as guantitatively as possible, we have systematically explored
the parameter space, testing for the presence of autocatalytic metabolisms. We
used two measures of the dominance of the autocatalytic set. One of these is A, and
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FIGURE 8 The fraction of the total mass for the network (N}, the background
(B), and the food set (F'). (The fraction for the network excludes the food set.) The
simulation is the same as that of Figure 7.

the other is the mass ratioc R == N/(B 4 F), where N is the mass of the network
(neglecting the food set), B is the mass of the spontaneous background, and F is
the mass of the food set.

In Figure 9 we show the behavior of A under variations of § and ». Note that
A remains near zero for a broad range of parameter values. For comparison, in
Figure 10 we plot the mass ratio R as a function of the same parameters, but for a -
network with fewer catalytic links. The behavior is more sharply peaked, but there
is a broad range in which the autocatalytic set contains the majority of mass in the
reaction vessel.

In Figure 11 we show the behavior of A under variations of v and the un-
binding rate constant k,. This figure illustrates how distinct the behavior of the
autocatalytic metabolism is from that of the background. In one regime, roughly
corresponding to lower values of » and lower values of k,, A behaves just as it
does for the spontaneous background. It is more negative and forms a relatively
flat surface as a function of parameters. The other regime, which corresponds to
larger values of the two parameters, has higher values of A. The transition from one
regime to the other is quite sharp. ,

Finally, to illustrate the effect of varying the forward rate constant & +,1n Figure
12 we show the effect of varying k; and 6. Once again we see a broad parameter
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FIGURE 11 A vs. logov and log k
FIGURE9 A vs. log;06 and log, g for the variation of the network of Figure 2
with 118 catalytic links. The parameters are ky = 3.

. for the variation of the network of Figure 2
and Mo = 2,0

P 4 with 118 catalytic links. £y = 3.02 x 10% £, = 2.70, § = 1.41 x 102 and my = 2.0.
02%10% kr = 2.70, by, = 7.11x10%

FIGURE 10 The mass ratio R — N/(B+F

) vs log, .6 and log, . for the network FIGURE 12 A wvs. log30 and log, ok for the variation of the network of Figure 2
: 1 1¢
of Figure 2. ky = 6.49 x 102 £, = 2.50, by = 5.00 x 10%

mo = 2.0 with 118 catalytic links. k, = 2.70, » = 5.26 x 105, ky = 7.11 x 10% and my = 2.0.
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regime in which the values of the slope are quite high. Interestingly, for small values
of § there is a regime in which increasing k; beyond roughly 10? causes a decrease
in A.

It is evident from Figures 6-12 that for reaction networks with fixed topologies
and uniform kinetic parameters, the dependence on parameters is fairly smooth.
The parameters that approximately give the maximum value of A are shown in
Table 2. To measure the size of the regime where autocatalytic sets are dominant,
we swepl the parameters of the system one at a time, holding the other parameters
constant at those of the maximum. We somewhat arbitrarily say that the system
supports an autocatalytic metabolism if the mass ratio is greater than one. For
convenience we held the reaction graph fixed. In one case we used the graph of
Figure 2 which has 2 minimal number of catalytic links; in the other we usgd a
graph with the same reactions, but 118 catalytic links. The results are summarized
in Table 2.

TABLE 2 Parameter regime that supports autocatalylic metabolisme. The kinetic pa-
rameter values roughly corresponding to the maximum value of A are shown in the
third column. To measure the size of the parameter regime that supports autocatalytic
metabolisms, we varied each parameter one at a time, holding the others constant at
their optimum values. We say that the system supports an autocatalytic metabolism
when the mass ratio /2 >1. For the experiment shown in (&) we kept the reaction graph
fixed at that of Figure 2, which has 15 reactions and 15 catalytic links. In (b) we used
a variation with the same reactions but 118 catalytic links.

Global parameters Description Optimum Range

()

ks Forward reaction rate  6.49 x 102 [< 1,10%%]

ky Reverse reaction rate 2.50 Not computed
v Catalytic efficiency 8.97 x 105  [10%6,> 10']
ky Unbinding rate 5.00 x 104 [10%, 103‘5l

6 Mass flux 1.79 x 101 {10%, > 10°]
(b)

kg Forward reaction rate  3.02x 10*  [< 1,10%]

k. Reverse reaction rate  2.70 [10%,10%2]

v Catalytic efficiency 526 x 10° [« 1,10%]

ky Unbinding rate 7.1 x 102 [107,> 1019
) Mass flux 141 x 102 [10%,> 10°]
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The overall conclusion that we draw from these studies is that in our artificial
chemistry there is a broad regime in which autocatalytic metabolisms dominate.
At this point, since the relevant kinetic parameters for real polymers are unknown,
we cannot say whether they lie within the favorable regime. In particular, it seems
that real catalytic efficiencies and forward rate constants are certainly on the low
end of the favorable regime. Determining whether or not real systems lie within the
favorable regime requires further investigation.

5. SENSITIVITY

The experiments of the previous section demonstrate that as long as the topology
is fixed and the parameters are uniform, the behavior of autocatalytic metabolisms
depends smoothly on parameters. In this section we investigate the sensitivity of
catalytic networks to variations in topology and to non-uniform variations of the
parameters of each individual reaction.

5.1 SENSITIVITY TO TOPOLOGY

The topology of a reaction network is clearly important. In Table 2, for example,
we have already seen that a reaction network with more catalytic links produces
autocatalytic metabolisms across a wider parameter regime. To test the dependence
on topology more directly, we simply generate many different reaction networks at
random and simulate their dynamics. For example, in Figure 13 we fix the reactions
and the kinetic parameters, but randomly vary the catalytic links. When there are a
small number of catalytic links, most reaction networks have highly negative values
of A near the equilibrium value, When there is an intermediate number of catalytic
links, A is highly sensitive to the topology—some networks depart significantly from
equilibrium, while others do not. Finally, when there is a large number of catalytic
links, almost all networks have roughly the same value of A, making a significant
departure from equilibrium.

This result is intuitively reasonable. When there are only a small number of cat-
alytic links, the configuration has to be rather special to generate an amtocatalytic
set. As the number of links increases the existence of an autocatalytic set becomes
more and more likely. Note, however, that the existence of an autocatalytic set is
by no means a sufficient condition for the system to generate a metabolism; there
are many graphs that have autocatalytic sets in thern, yet show no significant de-
parture from equilibrium. Thus, there is also an additional dynamic effect—adding
more and more catalytic links enhances the nonlinear feedback necessary to deviate
from equilibrium properties.
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FIGURE 13 Dependence of nen-equilibrium properties on catalytic connectivity. The
steady state slope A is shown for 5000 catalytic netwarks with different connectivity.
The reactions are fixed as in Figure 2, but the catalytic links are assigned randomly.
The total number of catalytic links is varied, as plotted on the horizontal axis. The
kinetic parameters are ks = 102 k, = 10, v = 10% k, = 104 § = 10% and my = 2.0.

5.2 SENSITIVITY TO PARAMETERS

For simplicity, in the results presented so far we assumed the kinetic parameters
were the same for all the reactions in the network. This is obviously unrealistic; in
any real chemical network, the parameters of each reaction are different. To test this
sensitivity, in Figure 14 we vary the catalyiic efficiency of each individual reaction
while we hold the efficiency of the other reactions constant. Varying the efficiency
of some reactions has a large effect on the steady-state slope, while varying others
does not.

The autocatalytic set of Figure 14 has only 15 links, one per reaction, so perhaps
it is not surprising that it is highly sensitive to the value of each catalytic efficiency.
If a similar experiment is performed using the same reaction network, but with
118 catalytic links, the opposite occurs. The properties are relatively insensitive to
the catalytic efficiency, as shown by Bagley.® This robustness comes about because
there are typically many catalysts for each reaction. This result is consistent with
that of Figure 13.
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FIGURE 14 Sensitivity to variation of catalytic efficiency. The slope of the network

at steady state is ploited as a function of the catalytic efficiency of each reaction,

using the graph of Figure 2 which conveniently has only one catalytic link per reaction.
The index 7 labels the catalysts, which are ordered according to length. The catalytic
efficiency of each individual reaction is varied while that of other reactions is held
constant. The parameters are k; = 6.49x 102 k, =2.50, v =8.97x 105 &, =5.00x 10¢
and mg=2.0.

Figure 15 shows the results of varying the the forward rate constant k; for the
catalytic network of Figure 2. As we see, there is also considerable sensitivity to
variations of k;.

The experiments of this section demonstrate that the sensitivity of antocat-
alytic metabolisms to variations of parameters depends on the density of the reac-
tion graph. In some parameter regimes the properties of autocatalytic metabolisms
are quite sensitive to parameters. This is not surprising—the kinetic equations are
highly nonlinear, and such sensitive behavior is common in highly nonlinear sys-
terns. This enhances the perception of autocatalytic metabolisms as “emergent phe-
nomena.” Withont actually performing a simulation, in these parameter regimes the
behavior of an autocatalytic metabolism is difficult to predict in advance. In other
parameter regimes, however, almost all parameter settings yield similar behavior.
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FIGURE 15 Sensitivity to variations of the forward rate constant, Using the reaction
network of Figure 2, the forward reaction rate k¢ of each reaction is varied in turn,
while k; for all the ather reactions is held constant. The steady-state slope A of the
network is plotted on the vertical axis. The parameters are k; = 6.49 x 10% &, = 2.50,
v =8.97 x 105 kb, = 5.00 x 10% and my = 2.0.

5.3 ROLE OF DIVERSITY

In order for catalysis to be able to concentrate the material of the system into only a
few species, it is necessary for some catalytic efficiencies to be high, while others are
low. Thus, it is clear that diversity of parameters is a necessary condition of catalytic
focusing. When we set v > 0 for some reactions and v = 0 for the remainder, we are
automatically introducing diversity. It is our impression that additional diversity in
the kinetic parameters, such as a distribution of values for », kg, and k;, tends to
increase the ability of the system to focus, but at present we have not demonstrated
this quantitatively.

6. METABOLIC ROBUSTNESS

In this section we make more precise the sense in which the autocatalytic activity
we have observed is similar to that of a metabolism, and investigate robustness to
changes in the food set.
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6.1 WHAT IS A METABOLISM?

A metabolism takes in material from its environment and reassembles it in order to
propagate the form of the host organism. Autocatalytic metabolisms take in mate-
rial from the food set, and through a chain of reactions whose rates are accelerated
by catalysis, boost the concentration of the members of the antocatalytic set. They
differ from contemporary metabolisms in that they do not require a host organism.

Another function of a metabolisimn is to extract free energy from the environment
and make it available for the functions of the organism. Through the pyrophosphate
mechanism discussed in subsection 2.4.2, autocatalytic sets can extract energy from
light and use it to energize polymers. This in turn alters the effective forward and
backward rate constants, enhancing the tendency for polymerization. As we see in
Figure 15, for an autocatalytic set to take over the medium in which it resides, it
is critical that the rate constants be in the proper regime. For real chemistry the
unenergized values of &y are probably in the unfavorable regime. This mechanism
for extracting energy is ciitical to the existence and therefore the “functioning” of
an autocatalytic metabolism.

In conclusion, although autocatalytic metabolisms are certainly much less so-
phisticated than the metabolisms of contemporary organisms, they exhibit the sarne
rudimentary properties.

6.2 ROBUSTNESS

The fact that their underlying deterministic dynamical equations appear to have
a unique stable fixed point endows autocatalytic metabolism with a considerable
degree of robustness to trauma. A perturbation in the concentration of one of
its elements, for example, quickly dies out.[] Thus, “selfrepair” of autocatalytic
metabolisms is built into their chemical kineties.

Another notion of robustness concerns variations in diet. Some metabolisms
can digest only one kind of food, and are, therefore, fragile to changes in their
environment. An example is the Panda, which can only digest bamboo. Others can
digest many different types of material, and are, therefore, quite robust to changes
in their emvironment. An example is the cockroach, which to the average urban
dweller seems capable of digesting anything.

In this section we investigate the robustness of autocatalytic metabolisms by
simply varying their food set. For example, in Figure 16 we simulate the steady-
state concentration profile for five different food sets in conditions where everything
else is held constant. In the first case, called the “default,” the focd set consists of
the four species {a, b, ab,bb}, which are all input at the same rate. This food set
gives rise to clear dominance of the autocatalytic metabolism over the background.
In the other cases the supply of at least one of these four species is eliminated, and

[T]However, a perturbation that adds new elements to the autocatalytic metabolism may be
strongly amplified. This possibility is discussed in detail in the corapanion paper.?
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FIGURE 16 A test of the robustness of an autocatalytic metabolism. A reaction
network with 22 palymers, corresponding to the endpoint in the simulation of Figure
3, is used o test four different variations of the food set. The table shows the food
set elements listed horizontally across the top and the rate at which each is supplied
per unit time for the experiments labeled -IV. The right-hand column gives the steady
state slope A of the autocatalytic network. In the figure the polymers of the network
are ordered according to length and assigned an index 7. The concentration of each
polymer is plotted as a function of i. Variations |l and |V cause the autocatalytic
metabolism to “die,” falling below the concentration levels without catalysis, while
variations | and Il leave it essentially unaltered. The parameters are k. = 10,

ky = 10% ky = 104 6 = 10?5 v = 10% and mp = 30.

TABLE 3
a b ab bb A

Default 5 5 5 5 —-125%x 10+
I 5 0 5 75 —144x107!
II 0 0 10 5 —3.84 x 1071
I 10 20 0 0 —~1.60 x 101
v 0 10 10 o0 —4.11 x 107!
No Catalysis 5 b 5 5 —-3.58 x 10~1
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the influx of the other species is adjusted so that the total rate of influx of mass
remains constant. The results are shown in Figure 16. The concentration profiles
cluster into two groups: In cases I and IIT the concentration profile is essentially
unaltered, giving the same dominance over the background observed with the de-
fault food set. Apparently the network is able to resupply the missing elements
with little alteration. For the other two alterations, in contrast, the antocatalytic
set appears to “die”: the concentrations change radically, dropping below the level
corresponding to that with no catalysis. The clustering evident in Figure 16 demon-
strates a qualitative difference between an auntocatalytic metabolism that is “alive”
and one that is “dead,” and reinforces our use of the word “metabolism” for this
behavior.

Note that we originally thought that survival under changes of the food set
might be easily explained by simply examining the reaction graph. However, there
are several cases where the antocatalytic set dies even though a metabolic pathway
is available that could potentially replenish the missing element. The persistence
of the autocatalytic metabolism depends on the topology, but it also depends on
complicated nonlinear cooperative effects associated with the kinetics.

7. DISCUSSION
7.1 RELEVANCE TO EXPERIMENTS

One of our ultimate goals is the discovery of antocatalytic metabolisms in the labo-
ratory. We hope that the parameters quoted in Table 2 will at least provide a crude
starting point for laboratory investigations. In any case, we have demonstrated
some qualitative principles that may serve as a guide in real experiments, such as:

m For an autocatalytic metabolism to dominate over its background, polyme:-
ization must be favored even in the absence of catalysis. In other words, the
primary role of catalysis is to focus the concentration into a few species, rather
than to effect an overall tendency for everything to polymerize. Energetic chem-
ical species such as pyrophosphate may play an important role in shifting the
effective equilibrium constant to favor overall polymerization.

# It is important to drive the system the proper distance from equilibrium. For

a significant effect the mean reaction number (as defined in subsection 2.4.1)
should be in the vicinity of 100, although the optimal value also depends on
the other parameters.

m  The largest possible deviation from equilibrium occurs when all the parameters

have finite values.’] This is particularly surprising for the catalytic efficiency
v and the forward rate constant k%, which one might have thought should be
as large as possible, However, since v and k} are almost certainly on the low
side of the favorable regime, from a practical point of view in experiments, an
effort should be made to find systems for which they are as large as possible.
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= In order for an autocatalytic set to be robust, the steady-state concentrations
of its components should be within a few orders of magnitude of each other.

We have posed several questions whose experimental resolution could prove or
disprove the assumptions of this model, or more likely, could guide revisions to
make it more realistic. The number of individual kinetic parameters involved is
enormous, and it is unrealistic to expect that they could be measured in detail.
However, experiments that measure the distribution of parameters could be very
useful. A measurement of the distribution of catalytic efficiencies as a function
of length for randomly chosen polypeptides or nucleic acids would be particularly
helpful,

By heating and cooling appropriate mixtures of amino acids, Sidney Fox has
observed the formation of protein-like polymers that form cell-like enclosures, called
proteinoid microspheres.?®2! It is possible that autocatalytic behavier played an
important role in the formation of proteinoids, through a mechanism analogous to
that discussed here. The problem of determining experimentally whether or not
an autocatalytic metabolism is present in the laboratory has not been solved, and
deserves more attention.

The formation of an enclosure is clearly a desirable property for an autocat-
alytic metabolism. An autocatalytic metabolisn might form its own enclosure, or
it might inhabit a pre-existing enclosure. Morowitz et al. have proposed that the
spontaneous formation of self-replicating lipid vesicles may have played a critical
role in the origin of life.2%3! Furthermore, they argue that they might be capable
of spontaneously producing amino acids, as well as a membrane potential. Such
vesicles might provide a natural home for autocatalytic metabolisms. In the spirit
of Cparin’s original proposals, it is conceivable that an autocatalytic metabolism
could establish a cooperative relationship with such a vesicle and evolve so that it
was able regulate its functions.

7.2 POSSIBLE SCENARIO FOR THE ORIGIN OF LIFE

Our results lend support to the hypothesis that the emergence of metabolisms
preceded the emergence of template-based self-replication. The formation of auto-
catalytic metabolisms might play a role in several possible scenarios for the origin
of life, The following gives one possible scenario:

[IThe only possible exception is the mass concentration mg, which we have not
studied in detail.
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Any one of several different mechanisms might have generated a supply of
monomers. In a reducing environment the experiments of Miller and Urey make
this plausible for amino acids. In principle it could also happen for nucleotides, hut
given that their formation is not energetically favorable,14,19:22,20,41,42 gy :;cids
seemn to be a more likely candidate. Non-equilibrium conditions fostered the forma-
tion of autocatalytic metabolisms. This might have happened either with the help
of pre-existing enclosures,®® or because the autocatalytic metabolisms formed
their own enclosures.?® Autocatalytic metabolisms flourished and evolved. Even-
tually, some of them happened to have constituent proteins with the appropriate
enzymatic properties to facilitate the synthesis and polymerization of nucleotides.
The resulting nucleic acids began to cooperate, either by catalyzing the formation
of each other, or making use of the catalytic properties of the proteins and forming
hypercycles, or both. The nucleic acids synthesized proteins, some of which were
incorporated into the autocatalytic metabolism. Eventually DNA molecules evolved
that coded for all the proteins and RNA enzymes involved with their own repli-
cation, completely taking over the original autonomous autocatalytic metabolisms
and causing them to disappear.

7.3 CRITIQUE

We feel 1_;hat there are at least two major problems with the model for autocatalytic
metabolisins that we have presented here, at least as it pertains to experiments:

1. _Reh'ance on o mass flux lo drive the system away from equilibrium. It seems
implausible to assume that a flux of appropriate material would exist for a
sustained period of time in a natural setting.[3] Although we have also explored
the possibility of light as an energy source, using pyrophosphate as an energy
transducer, in its present form this mechanism essentially only serves to shift
the equilibrium point, and cannot focus the material of the system to create a
metabolism all by itself. Another mechanism for focusing the energy of the sys-
Fem, perhaps based on oxidation-reduction reactions, might solve this problem
in a more realistic manner,233!

2. Ceatalytic properties for short polymers. The random rule generates reactions
whose catalysts may be short polymers. This is unrealistic. The match rule we
have formulated takes this to the opposite extreme, and only allows polymers
longer than a certain critical size to participate in any catalytic reactions, either
as reactants or as catalysts. Because of this the problem of maintaining a flux
from the food set to the catalytic network becomes difficult. Of course, there

.[S]Note that an autocatalytic metabolism may be able to persist through periads in which the system
15 &t equilibrium, particularly if the palymers form enclosures that exclude water. Even very small
cencentrations may be sufficient to “seed” the formation of the original autocatalytic metabalism once
non-equilibrium conditions are re-established.
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are always spontaneous reactions between short polymers, which automatically
expand the food set to a certain critical size, as deseribed by Eq. {6). This
might be sufficient, but in any case it complicates the problem.

We need to explore this question more carefully. One possible line of investi-
gation is to use an artificial chemistry that is infermediate between the two
proposed here, in which short polymers cannot be catalysts, but can be reac-
tants. Still another solution might follow from finding an alternative energy
source, as suggested in Eq. (1) above.

From a broader perspective of studying self-organization, this model suffers
from a problem that is generic for many artificial life models. The process of mak-
ing abstractions and simplifications builds a straightjacket that limits its emergent
properties. The model presented here is essentially a “connectionist” model for
chemistry, and suffers from the limitations inherent to this level of description.!®
In order to make this model tractable, we have reduced real polymers, which have
complex spatial structure, to an interaction rule and a set of rate equations that
measures only one aspect of their aggregate behavior. To see further emergence of
functional properties, such as the formation of enclosures, it may be necessary to
study an artificial chemistry that is richer than that we have studied here. Unfortu-
nately, such a model will inevitably require more computational power. This seems
to be an unavoidable trade-off that occurs in all artificial life models. Even with
a Connection Machine, one must be very clever to compete with Nature, who has
more than Avogadro’s number of parallel processors.

7.4 ARE THEY ALIVE?

The artificial metabolism that we have studied here represents an organizational
state that is between that of living and non-living systems. Given the appropriate
conditions, within its own artificial universe an autocatalytic metabolism emerges
spontaneously. It metabolizes energy, capturing the material of its universe and
incorporating it into its own form. It also reproduces itself, although it does so
continuously rather than discretely.

A good point of comparison is the class of oxidation reactions that produce
“rust.” Rust can be an autocatalytic reaction, in the sense that the presence of rust
engenders the formation of more rust. For example, collectors of bronze coins are
very careful to avoid “bronze discase,” a form of rust that degrades a bronze coin,
and spreads rapidly from coin to coin; if a coin is discovered to have bronze disease,
it is immediately quarantined, to avoid the infection of other coins.

The key difference between autocatalytic metabolisms and simple autocat-
alytic reactions has to do with diversity and specificity. For a given metal, such as
bronze, there is typically only one variety of rust. For a given polymeric medium,
such as amino acids, there may be an enormous number of different autocatalytic
metabolisms, each of which contains a different mixture of polymeric species. As
we discuss in a companion paper, when the stochastic dynamics of spontaneous
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reactions are taken into account, which autocatalytic metabolism dominates at any
given time depends on the history of the medium. Autocatalytic metabolisms can
act like “seeds”—the presence of a minimal set of the elements of an autocatalytic
metabolism, even at low concentrations, may allow this metabolism to take over
its medium, and block the formation of other autocatalytic metabolisms.? Auto-.
catalytic metabolisms are both diverse and specific. Finally, as discussed in the
companion paper, they also have the necessary feedback mechanisms to propagate
themselves and amplify variations.

Insofar as an autocatalytic set is alive, it is a much cruder and less specific form
of life than an organism with reproductive machinery based on templating. There
is no genetic code for autocatalytic metabolisms. The message is simply the set of
chemical species present in the soup.

There has been some debate concerning whether or not Gaia, i.e., the Earth,
can be considered to be a living organism in and of itself.2® The relevant issues
bearing on the question of whether or not autocatalytic metabolisins are alive are
closely related to those for Gaia. The properties of autocatalytic metabolisms and
(Gaia are strikingly similar. First, an autocatalytic metabolism causes a substantial
deviation from the equilibrium properties of the medium it occupies. Second, an
autocatalytic metabolism may be the sole inhabitant of its medinm. In this case,
iike Gaia, the autocatalytic metabolism evolves only through the richness of its
own dynamics. One type of autocatalytic metabolism spontaneously evolves into
another. There is internal competition and cooperation. .

An objection to the consideration of Gaia as a living organism has been raised
by Dawkins, who points out that since it is the sole inhabitant of its environ-
ment, there is no mechanism for selection.?® While we argue that autocatalytic
metabolisms might “evolve” on their own, they need not remain isolated, and in
general it is unlikely that they would. It is quite natural to imagine diverse autocat-
alytic metabolisms in separate enclosures, geographically isolated from each other,
occasionally coming in contact, and competing and/or cooperating with each other.
Some preliminary simulations involving spatially isolated antocatalytic metabolisms
have been made by Bagley.® Thus, Dawkin’s objections do not apply to autocat-
alytic metabolisms. A significant difference between autocatalytic metabolisms and
Gala is that the constituents of Gaia are themselves alive, whereas the constituents
of autocatalytic metabolisms are not. Insofar as they are alive, Gala is a simple
organism made out of very complex organisms, whereas autocatalytic metabolisms
are simple organisms made out of inanimate matter.

7.5 SUMMARY

We have demonstrated that under appropriate conditions an autocatalytic set can
concentrate much of the mass of its environment into a focused set, with con-
centrations orders of magnitude above equilibrium. When this occurs we call the
network an autocatalytic metabolism. The use of the term metabolism is supported
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by the arguments of Section 6, and by the demonstration that some autocatalytic
metabolisms are robust, and are capable of digesting a variety of different food sets.

Autocatalytic metabolisms can be highly sensitive to both the topology of the
reaction network and the kinetic parameters of individual reactions. Because of this
sensitivity, without performing a simulation it is difficult to state in advance whether
or not a reaction network supports an autocatalytic metabolism. Nonetheless, there
are ranges of parameters where most parameter values or most topologies support
an autocatalytic metabolism. An indication of the range of parameter values where
autocatalytic metabolisms are common is given in Table 2, and Figures 6-12.

These simulations demonstrate there is a favorable regime in which the flow of
energy through the system is “just right” to make its properties radically differ-
ent from those at equilibrium. There is an intriguing correspondence with behavior
observed in other natural and artificial systems. For example, Langton® has per-
formed experiments constructing cellular automata rules at random. The rules are
constrained to have a fixed probability of producing a non-zero state, which is reg-
nlated by a parameter A. In an analogy to thermodynamics A corresponds to the
Boltzmann factor AFE/ET, and thus, in a generalized sense, measures how far the
system is driven from equilibrium. Langton finds that the most interesting behavior
occurs at a finite value of A, intermediate between the equilibrium value and the
largest possible deviation from equilibrium. It is also interesting to note the roughly
sigmoidal shape of the transition in Figure 9, which is similar to the phase tran-
siticns observed by Langton. This correspondence may be more than accidental,
since both phenomena involve measurements of quantities that go through a phase
transition when graph closure is obtained.

This model adds support to the idea that the emergence of a metabolism may
have preceded the emergence of a self-replicator based on templating machinery.
Perhaps more important, it provides an example of a “self-organizing structure”
that is intermediate in complexity between life and non-life. There is an old idea,
clearly articulated by Herbert Spencer,*® that in some general sense the evolution
of form and organization depends on diversity arising from: physical laws. Autocat-
alytic metabolisms illustrate how diversity in nonlinear feedback loops can couple to
a flow of energy and radically alter the properties of a system from those at equi-
librium, giving rise to information-carrying, propagating structures. This follows
naturally from the rules of chemical kinetics. Although autocatalytic metabolisms
are quite simple and lack the sophistication of modern organisms, they nonetheless
fulfill the same functions as a contemporary metabolism, and challenge our notion
of what it means to be alive.
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APPENDIX
KINETIC EQUATIONS

The effect of saturation can be taken into account exactly (within the himit of
validity of mass action) by breaking down a catalyzed reaction into each of its parts.
This involves keeping track of several different intermediate products: A4 bound to
E, B bound to E, C bound to £, and AB bound to E. Each reaction thus has
four intermediaries. The autocatalytic networks that we simulate may have many
species, and typically have many more reactions than species. Thus, treating each
catalyzed reaction in full detail would enormously increase the complexity of the
simulation.

Another difficulty of the simulation comes about because the reactions are all
reversible; if we allowed them to be irreversible, we would have effectively assumed
the solution. This means that traditional schemes such as the Michaelis-Menten
approximation are not applicable.

We simplify the saturation problem by assuming that A and B bind to each
other as soon as they are bound to the enzyme E. We then break the reversible
reaction of Eq. (8) into two irreversible reactions of the form

A+B+E 2L CE4+H,

vkr DO (22)
C+H+E % ABE.

ABE and CF are complexes formed in the reaction. The further dissociation of the
bound complexes into free elements is treated through the irreversible reactions
CE &% c+E,

ek (23)
ABE % A+ B+E.

ku is a constant that characterizes the rate at which the reactants unbind from
the enzyme. Taking these together, and adding on the effect of the spontaneous
reactions gives the rate equations

dCE

“L = b TE+ k(14 vE)AB,

d‘gﬁ = b ABE + k(1 + vE)CH
%f_ = k,CF — k(1 +vE)CH, (29)
% = b, ABE — ky(1+ vE)AB,
dE .

ko CE + kyABE — (1 + vE)(k; AB — E,CH).

tl
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Note that we are using the same symbol for the bound complex ABE and its
concentration. The reason the last equation differs from the others is becanse the
enzyme I is involved in two bound complexes, and so has two terms involving k..

In comparison with the exact reaction scheme, the approximate reaction scheme
of Eq. (24) reduces the number of intermediates by a factor of two. However, as
described in the remainder of this section, by making a simple substitution of vari-
ables, we can make a simplification that goes considerably beyond this, so that
the number of equations that must be solved including saturation is only twice the
number required without saturation.

Suppose that a given species ¢ participates in many different reactions, and
is bound up in many different complexes Tm. For convenience, assume that each
has the same dissociation constant k. Using the approximation scheme above, the
Lkinetic equation for de;/dt is of the form

da:,- _ .
- = ky %: G + Z(reactzon terms). (25)

The first term takes into account all of the bound complexes that contribute to
species i when they dissociate. (reaction terms) consists of a sum of terms, one
for each reaction that species i participates in. Each term is of the form of Eq.
(24), according to whether ¢ plays the role of A, €, or E. Note that these only
involve free species; none of the bound complexes G, are involved. Furthermore,
the dissociation terms that involve T, are all linear. Thus, if we define the new

variable
I = Z'Em R (26)

m
we can rewrite Eq. (25) as
d:c,- _ .
W= kuT; + Z(reactzon terms). (27)
Siinilarly, each bound complex has a kinetic equation of the form
dEm .
dct = —kyCm + Z(reactwn terms). {28)

There is only one reaction texrm, corresponding to the particular reaction associated

with the complex. If we add up the equations associated with all the reactions that
x; participates in, we obtain

d &

dt

Thus, we can solve for Z; without having to solve for each intermediate complex from

which it is derived. Since none of the reaction terms involve the bound complexes,

we never have to solve for them. The number of variables is just twice the number

of polymer species, rather than more than twice the number of reactions. We have

taken saturation into account, at the small cost of doubling the effective number of
species.

= —k,F; + Z(reactz'on terms). {29)



TTTTT v megioy auu gL LOYNE Farmer

REFERENCES

1.

2.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

Anderson, P, W, “Suggested Model for Prebiotic Evolution: The Use of Chaos.”
Proc. Natl. Acad. Sci. 80 (1983): 3386-3390.

Bagley, R.J., J. D. Farmer, 5. A. Kauffman, N. H. Packard, A, . Perelson,
and 1. M. Stadnyk. “Modeling Adaptive Brological Systems.” Biosystems 23
(1989): 113-138.

- Bagley, R. J. “The Functional Self-Organization of Autocatalytic Networks in

a Model of the Evolution of Biogenesis.” Ph.D. Thesis, University of Califor-
nia at San Diego, La Jolla, CA, 1990.

- Bagley, R. J., J. D. Farmer, and W. Fontana. “Evolution of » Metabolism.”

This volume.

- Calvin, M. “Chemijcal Evolution and the Origin of Life.” Amer. Se;. 44 (1956):

248-263.

. Calvin, M. Chemical Evolution. Oxford: Oxford University Press, 1969.
. Cech, T. R. “The Chemistry of Self-Splicing RNA and RNA Enzymes” $ei

ence 236 (1987): 1532

- Dyson, F. “A Model for the Origin of Life.” J. Mol Buol 118 (1982): 344-

350.

- Eigen, M., and P. Schuster. “The Hypercycle: Principle of Natural Self-

Organization. Part A: The Emergence-of the Hypercyele.” Naturwissenschaﬁen
64 (1977): 541-565.

Figen, M. “Self-Organization of Matter and the Evolution of Biological Macro-
molecules,” Naturwissenschaften 58 (1971): 465-523.

Farmer, J, D,S A. Kauffman, and N. H. Packard, “Autocatalytic Replica-
tion of Polymers.” Physica D 22 (1986): 50-67.

Farmer, J. D., N, 1. Packard, and A. S, Perelson. “The Immune System,
Adaptation, and Machine Learning.” Physicq D 22 (1986): 187-204.

Farmer, J. D. “A Rosetta Stone for Connectionism.” Physica D 42 ( 1990):
153-187.

Ferris, J. P. “Prebiotic Synthesis: Problems and Challenges.” Gplg Spring
Harbor Symp. Quant, Biol LXIX (1987): 29-35.

Flory, P. J. Principles of Polymer Chemistry. Tthaca. Cornell University Press,
1953,

Fontana, W. “Algorithmic Chemistry: A Model for Functional Self-Organization.”

This volume.

Fontana, W, “Turing Gas: A New Approach to Funetional Self-Organization.”
Preprint, 1991.

Fox, R. F. Biological Energy Transduction: The Uroboros. New York: John
Wiley, 1983.

fox, R. F. Fnergy and the Evolution of Life. New York: W. H. Freeman,

1988.

Fox, 8. W, K. Harada, and J. Kendrick. “Production of Sperules from Pro-
teinoids and Hot Water ” Science 129 (1959): 1221-1293.

Spontaneous Emergence of a Metabolism 139

30.
31
32.

33
34.

40.

41.

. Fox,S. W, T. N akashima, A. Preytylski, and R. M. Syren. “The Updated

Experimental Proteiniod Model.” fnt. J. Quantum Chem. 55 (1982): 195.
Joyce, G. F. “RNA Evolution and the Origins of Life.” Nature 338 (1989).
Kauffman, 8. A. “Cellular Homeostasis, Epigenesis and Replication in Rap.-
domly Aggregated Macromolecular Systems.” J. Cybernetics. 1 (1971): 71-96.

. Kauffman, S. A. “Autocatalytic Sets of Proteins.” J. Theor. Biol 119 (1986):

1-24.

25. Langton, C. G. “Computation at the Edge of Chaos: Phase Transitions and

Emergent Computation.” Physicg D 42 (1990).

3. Lovelock, J. E. Gaia: A4 New Look at Life on Earth. Oxford: Oxford Univer.

sity Press, 1979.

27. Macken, C. A., and A. &, Perelson. Branching Processes Applied to Cell Sur-

face Aggregation Phenomena. Leciure Notes in Biomatﬁemaiics, Vol. 58. Berlin:
Springer-Verlag, 1985.

28. Miller, 8. L., and H. C. Urey. “Organic Compound Synthesis on the Primitive

Earth.” Science 130 (1959): 245.

29. Miller, S. L., and I.. E. Orgel. The Origins of Life on Earth. Concepts of

Modern Biology. Englewood Cliffs, NJ: Prentice-Hall, 1974.

Morowitz, H. J., B. Heinz, and D. Dearmer. Origins of Life 18 {1988): 281~
287,

Morowitz, H. J. The Beginnings of Cellular Life: Metabolism Recapitulates
Biogenesis. 1991, Preliminary manuscript,

Nicolis, G., and I. Prigogine. Self-Organization in Noneguilibrium Systems.
New York: John Wiley, 1977,

Oparin, A. 1. The Origin of Life. New York: Macmillan, 1938.
Paecht-Horowitz, M. “Polymerization on Surfaces.” In Polymerization of
Organized Systems, edited by H. G. Elias, 89-113. New York: Gordon and
Breach, 1977.

- Paecht-Horowitz, M., J. Berger, and A. Katchalsky. “Prebiotic Synthesis of

Polypeptides by Heterogeneons Polycondensation of Amino-Acid Adeny-
lates.” Nature 228(5272) (1970): 636-639.

46. Rasmussen, S., C. Knudsen, and R, Feldberg. “Dynamics of Programmable

Matter.” This velume.

37. Rossler, Q. «a System Theoretic Model of Biogenesis.” 7. eturforsch B26h

(1971): 741-7486.

38. Rossler, O. “Deductive Prebiology.” In Molecular Evolution and the Prebjo-

logical Paradigm, edited by K. L. Rolfing. New York: Plenuin, 1983.

39. Stein, D. L., and P, W. Anderson. “A Model for the Origin of Biological

Catalysis.” Proc. Nail. Acad. Sei. 81 (1984): 1751-1753.

Stockmayer, W. 1. “Theory of Molecular Size Distribution and Gel Forma-
tion in Branched-Chain Polymers.” J. Chem. Phys. 11(2) (1943): 45-55.
Schwartz, A, W., J. Visscher, R. Van der Woerd, and C. G. Bakker. “In Search
of RNA Ancestors” Cold Spring Harbor Symp. Quant. Biol LXII (1987):
37-39.



14 MICHENg J. DAgIiey dliud o, POy1Hg railliel

49. Shapiro, R. Origins: A Skeptics Guide to the Creation of Life. New York:
Summit Books, 1986.

43, Spencer, Herbert. First Principles. 1862.

44. Van Dongen, P. G.J., and M. H. Ernst. “Kinetics of Reversible Polymeriza-
tion.” J. Stat. Phys. 37 (1984): 301-324.




