
In the past decade or so, physicists have begun to do aca-
demic research in economics. Perhaps a hundred people

are now actively involved in an emerging field often called
econophysics, and two new journals and frequent confer-
ences are devoted to the field. At least ten books have been
written recently on econophysics in general or on specific
subtopics. The University of Fribourg in Switzerland
maintains an extensive bibliography of books and archived
articles at its econophysics website, http://www.unifr.ch/
econophysics. Physics departments worldwide are grant-
ing PhD theses for research in economics, and in Europe
several professors in physics departments specialize in
econophysics. The international consulting firm McKinsey
and Co sponsors a new annual research prize, the Young-
Scientist Award for Socio- and Econophysics. 

Is all this activity just a fad, or is something more sub-
stantial happening?

If physicists want to do research in economics, why
don’t they just get degrees in economics in the first place?
Why don’t the econophysicists retool, find jobs in econom-
ics departments, and publish in traditional economics
journals? Perhaps the growth of econophysics is just a tem-
porary phenomenon, driven by a generation of physicists
who made bad career choices. Is there any reason why
members of economics departments should pay heed to the
methods of physics? What advantage, if any, is conferred
by a background in physics? And most important, how does
econophysics differ from economics, and what unique con-
tribution can it make?

Social physics
The involvement of physicists in social science has a long
history, going back at least to Daniel Bernoulli, who in-
troduced in 1738 the idea of utility to describe people’s
preferences. Pierre-Simon Laplace, in his Essai philoso-
phique sur les probabilités (1812), pointed out that events
that might seem random and unpredictable, such as the
number of letters in the Paris dead-letter office, can be
quite predictable and can be shown to obey simple laws.
Laplace’s ideas were further amplified by Adolphe
Quetelet, who was a student of Joseph Fourier and who
studied the existence of patterns in data sets ranging from
the frequency of different methods for committing murder
to the chest size of Scottish men. It was Quetelet who, 
in 1835, coined the term “social physics.” Analogies to

physics played an important role in
the development of economic theory
through the 19th century, and some of
the founders of neoclassical economic
theory, including Irving Fisher, were
originally trained as physicists;
Fisher was a student of Willard
Gibbs. In 1938, Ettore Majorana pre-
sciently outlined both the opportuni-
ties and pitfalls in applying statisti-

cal-physics methods to the social sciences.
The range of topics that have been addressed by physi-

cists spans many different areas of economics. Finance is
particularly well represented (see the article by Joseph
Pimbley, PHYSICS TODAY, January 1997, page 42); sample
topics include the empirical observation of regularities in
market data, the dynamics of price formation, the under-
standing of bubbles and panics, methods for pricing op-
tions and other derivatives, and the construction of opti-
mal portfolios. Broader topics in economics include the
distribution of income, the emergence of money, and im-
plications of symmetry and scaling for market functioning.
We believe that a union of the methods of physics and eco-
nomics, and collaborations between physicists and econo-
mists, can add value to the science of economics. However,
overselling that view has its dangers; econophysics is far
from well established.

Despite the fields’ long history of association, the sub-
stantial contribution of physics to economics is still in an
early stage, and we think it fanciful to predict what will
ultimately be accomplished. Almost certainly, “physical”
aspects of theories of social order will not simply recapit-
ulate existing theories in physics, though already there ap-
pear to be overlaps. The development of societies and
economies can be contingent on accidents of history and at
every turn hinges on complex aspects of human behavior. 

Nonetheless, striking empirical regularities suggest
that at least some social order is not historically contin-
gent, and is perhaps predictable from first principles. The
role of markets as mediators of communication and dis-
tributed computation, which underlie the collective
processes of price formation and allocation of resources,
and the emergence of the social institutions that support
those functions, are quintessentially economic phenom-
ena. Yet the notions of markets’ communication or compu-
tational capacities, and the way differences in those ca-
pacities account for the stability and historical succession
of markets, may naturally be part of the physical world
with its human social dynamics.

Markets and other economic institutions bring with
them concepts of efficiency or optimality in satisfying
human desires. While intuitively appealing, such ideas
have proven hard to formalize even if some progress has
been made. As with most new areas of physical inquiry, we
expect that the ultimate goals of a physical economics will
be declared with hindsight, from successes in identifying,
measuring, modeling, and in some cases predicting em-
pirical regularities.

The search for universality
Economists are typically better trained than physicists in
statistical analysis, so physicists might seem to have little
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to contribute in that area. However, differences in goals
and philosophy are important. Physics is driven by the
quest for universal laws. Partly because of the extreme
complexity of social phenomena, that quest has been
largely abandoned in our postmodern world, where rela-
tivist philosophies of science enjoy disturbingly wide-
spread acceptance. Nowadays, work in social science is
largely focused on documenting differences. Although the
trend is much less obvious in economics, a typical paper in
financial economics, for example, might study the differ-
ence between the New York and NASDAQ stock ex-
changes, or the effect of changing the tick size, or smallest
change, of prices. Physicists have entered the field, per-
haps naively, with fresh eyes and new hypotheses, and
have looked at economic data with the goal of finding per-
vasive regularities; they emphasize what might be com-
mon to all markets rather than what makes them differ-
ent. Such work has been opportunistically motivated by
the existence of large data sets like complete major-
exchange transaction histories that span years and that
sometimes contain hundreds of millions of events.

Much of the work by physicists in economics concerns
power laws. A power law is an asymptotic relation of the
form f(x) O x⊗a, where x is a variable and a > 0 is a con-
stant. In many important cases, f is a probability distri-
bution. The first power-law distribution in any field was
observed in economics (see the box on page 39), and the ex-
istence and significance of economic power laws has been
a matter of debate ever since. In 1963, Benoit Mandelbrot
observed that the distribution of cotton price fluctuations
follows a power law.1 Later, more detailed observations of
power laws were made by Rosario Mantegna and Eugene
Stanley, who coined the term econophysics.2 Figure 1
shows the striking fidelity often found in economic power
laws. The existence of power laws in price changes is in-
teresting from a practical point of view because it has im-
plications for the risk of financial investments, and from a
theoretical point of view because it suggests scale inde-
pendence and possible analogies to critical phenomena and
nonequilibrium behavior in the processes that generate fi-
nancial returns.

Many other economic power laws have been discov-
ered by physicists. They describe the variance in the
growth rates of a company as a function of the company’s
size,3 the distribution function for the number of shares in
a transaction, the distribution function for the number of
trading orders submitted at a specified price from the best
price offered, and the size of the price response to a trade
as a function of the size of the company being traded. The
question of why power laws are ubiquitous in financial
markets has stimulated a great deal of theoretical work.

Long memories
One of the most famous and most used price models is the
random walk, introduced for prices by Louis Bachelier, a
student of Henri Poincaré, in 1900; that was five years be-
fore Albert Einstein used it to describe Brownian motion.
The random walk is the basis for the Black–Scholes the-
ory of option pricing, which won Robert Merton and Myron
Scholes the 1997 Nobel memorial prize in economics. Since
then, physicists have incorporated into extended analytic
methods for pricing options more realistic assumptions
about how prices behave.4

An interesting and surprising property of the random
walk for real prices is that the diffusion rate is not con-
stant. The size of the price change at a time t is correlated
to that at t + t even though the directions of the price
changes are uncorrelated: This phenomenon is called clus-
tered volatility. The correlation decays as a power law of

the form t⊗g. Since 0 < g < 1, the size of price change is a
long-memory process and thus displays anomalous diffu-
sion and a very slow convergence of statistical averages.

Physicists have discovered that volatility is just one of
several long-memory processes in markets. One of the
most surprising of those concerns fluctuations in supply
and demand.5 If one assigns ⊕1 to an order to buy and 
⊗1 to an order to sell, the resulting series of numbers has
a positive correlation that decays as a power law with an
exponent of about 0.6. The positive correlation persists at
statistically significant levels over tens of thousands of or-
ders, for weeks. Thus change in supply and demand is a
long-memory process, which has interesting implications
for a fundamental concept in financial economics called
market efficiency.

The principle of market efficiency takes many forms.
A market is informationally efficient if prices reflect all
available information; it is arbitrage efficient if it is im-
possible for investors to make excess profits; and it is al-
locationally efficient if prices are set to maximize every-
one’s welfare. One of the consequences of informational
efficiency is that prices should not be predictable. In real-
ity, the assumption of price unpredictability is not bad—
even the best trading strategies exploit only very weak lev-
els of predictability.

The coexistence of long-memory supply and demand
with market efficiency creates an as yet unresolved puz-
zle. Long-memory processes are highly predictable. Since
the entrance of buyers tends to drive prices up, and the en-
trance of sellers tends to drive them down, the long mem-
ory of supply and demand suggests that price change
should also be long memory. But that would be incompat-
ible with informational efficiency. To prevent such incom-
patabilities, the agents in the market must somehow col-
lectively adjust their behavior: They might, for example,
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Figure 1. Price-movement distribution for 1000 stocks
from the New York and NASDAQ stock exchanges.
The data represent 15 million events. A movement in
price p over a time t is defined as log p(t ⊕ t) ⊗
log p(t); here t is 15 minutes. The price movement for
each stock is normalized by dividing by the standard
deviation in price movement for that stock. The distri-
bution function gives the probability that the absolute
value of a normalized price movement is greater than
x. The straight line on the right side of the curve indi-
cates a power law over about two orders of magni-
tude. (Adapted from ref. 15.)



create an asymmetric response of prices so that with an
excess of buyers, the price response to buy orders is
smaller than it is to sell orders. How and why that asym-
metry comes about remains a mystery, perhaps related to
the cause of clustered volatility.

A great deal of other empirical work uses methods and
analogies from physics. For example, random matrix the-
ory, developed in nuclear physics, and ultrametric corre-
lations have proved useful for understanding the correla-
tion between the movements of different companies’ prices.
An analogy to the Omori law, which gives the distribution
in time for seismic activity after major earthquakes, has
helped econophysicists understand the aftermath of large
crashes in stock markets, and other analogies from geo-
physics have led to a controversial hypothesis about why
markets crash.6 The statistics of price movements have
been noted to closely resemble those of turbulent fluids, an
observation that has led to what may be the best empiri-
cal models available for predicting clustered volatility.
Such examples speak to the universality of mathematics
in its applications to the world.

Modeling the behavior of agents
The most fundamental difference between a physical sys-
tem and an economy is that an economy is inhabited by
people, who have strategic interactions. Because people
think and plan, and then make decisions based on their
plans, they are much more complicated than atoms (see
the article by George Ellis, PHYSICS TODAY, July 2005,
page 49). As a consequence, the mathematical techniques
and modeling philosophy in economics have diverged from
those in physics. Although such a divergence is clearly nec-
essary, many physicists would argue that the gap is wider
than it should be.

The central approach to strategic interactions in neo-
classical economics is the theory of rational choice. In 
the economists’ stylized version, a rational individual 
maximizes some measure of personal—usually material—
welfare, with perfect knowledge of the world and of other
agents’ goals and abilities, and with the capacity to perform
computations of any complexity. When agent Aconsiders any
strategy, agent B knows that A is considering that strategy,
and A knows that B knows that A knows, and so on. This in-
finite regress appears very complicated. However, a key sim-
plifying result is that in any game there exists at least one
Nash equilibrium, which is a strategy that is the best de-
fense against itself. Every Nash equilibrium is a fixed point
in the space of strategies, and it circumvents the infinite
regress problem by imposing self-consistency as a defining
criterion. Subject to several caveats, rational players who
are not cooperating with each other will choose a Nash strat-
egy—that is the operational meaning of rational choice. The
assumption that decisions of real human beings can be ap-
proximated by rational choice dominated microeconomics—
economic thinking about individual choices—from about
1950 until the mid-1980s, though it is clearly implausible
for all but the simplest cognitive tasks. It also leaves unad-
dressed the problem of macroeconomics, the aggregation of
individual choices and the behavior of large populations.

Imperfect rationality
In the past 20 years, economics has begun to challenge the
assumptions of rational choice and perfect markets by mod-
eling imperfections such as asymmetric information, in-
complete market structure, and bounded rationality. Sev-
eral new schools of thought have emerged. The behavioral
economists attempt to take human psychology into account
by studying people’s actual choices in idealized economic
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Income Distributions

In 1897 Vilfredo Pareto identified the first power-law distri-
bution in any field. He was studying the distribution of in-

come among the highest-earning inhabitants of the UK; now
all income distributions of the form he observed are known
in economics as Pareto distributions. Pareto’s subsequent
studies of income distribution in Prussia, Saxony, Paris, and a
few Italian cities confirmed his initial observations. The fig-
ure, courtesy of Makoto Nirei and Wataru Souma, shows
modern Pareto distribution examples derived from federal in-
come tax reporting sources for the US and Japan. (The data
for the US are truncated at $1 million.) Studies conducted
over the past few years have shown that not only does the in-
come of the wealthy conform to a pattern, but so does the in-
come of the majority of wage earners, and the two groups fol-
low different distributions.17 The low- and medium-income
body of the distribution is either exponential, as is the case
for the US, or log-normal, as is the case for Japan. Just where
the transition to the Pareto law for large incomes takes place
depends on time, tax laws, and other factors as yet unknown.

As striking as the scale-free nature of income distribution
is the fact that the overall distribution is so featureless. It is
described by four or five parameters: the mean income, the
Pareto exponent, the transition point between low- and high-
income ranges, and either the exponential constant or the
mean and variance of the log-normal in the low range.
Pareto, log-normal, and exponential distributions are all lim-
iting distributions of simple random processes and can be de-
rived as maximum-entropy distributions for income, subject
to appropriate boundary conditions. 

Income distribution is a hot topic economically and polit-
ically, because it lies at the heart of a society’s notions of

egalitarianism, opportunity, and social insurance. Not sur-
prisingly, causes of income inequality such as distinctions be-
tween capital ownership and wage labor are asserted, and
major policy implications are derived. Maximum-entropy in-
terpretations of income distribution place conceptual and
quantitative bounds on such arguments. They suggest that the
many detailed societal features that could, in principle, affect
incomes average out somehow so that their individual char-
acteristic scales are not imprinted on the aggregate distribu-
tion. The ultimate constraints may be conservation laws or
boundary conditions reflected in at most a few parameters.
Such featureless averaging, like scaling relations, may sug-
gest that a form of universality classification is fundamental
to economics, as it is to thermodynamics and field theory.



settings. Another school ad-
dresses bounded rationality
with idealizations of problem
solving and learning that
range from standard statis-
tical methods to artificial
intelligence. Agent-based
modeling focuses on the
complexity of economic inter-
actions by using computer
simulations based on ideal-
izations of human behaviors.
Yet another approach as-
sumes that some agents,
called noise traders, have ex-
tremely limited reasoning ca-
pabilities while others are
perfectly rational. Physicists
have joined with economists
to seek new theories of not
fully rational choice, and
have brought new perspec-
tives to bear on the problem.

An early effort using
both agent-based modeling
and artificial intelligence
was the Santa Fe Artificial
Stock Market. It grew out of
a 1986 conference, organized
by Kenneth Arrow, Philip
Anderson, and David Pines,
that brought together physi-
cists and economists. Pre-
saging the modern move to-
ward behavioral economics,
the physicists all expressed
disbelief in theories of ra-
tional choice and suggested
that the economists should
take human psychology and
learning more into account.
The Santa Fe Artificial Stock
Market, a collaboration among economists, physicists, and
a computer scientist, replaced the rational agents in an
idealized market setting with an artificial-intelligence
model.7 That substitution led to qualitative modifications
of the statistics of prices—for example, fat-tailed distribu-
tions of price change and clustered volatility—and sug-
gested that nonrational behavior plays an important part
in generating those modifications.

The problem with approaches exemplified by the
Santa Fe Artificial Stock Market is that they are compli-
cated, and although they capture some qualitative fea-
tures of markets, they have not led to more quantitative
theories. Agent-based models tend to require ad hoc as-
sumptions that are difficult to validate. 

The hypothesis of rational choice, in contrast, has the
great virtue of parsimony. It makes strong predictions
from simple hypotheses and, in that sense, is more like a
physics theory. This has motivated a search for other sim-
ple parsimonious alternatives, one of which is often called
zero intelligence. If rational choice enters the wilderness
of bounded rationality from the top, zero intelligence en-
ters it from the bottom. Agents with zero intelligence be-
have more or less randomly, subject to constraints such as
their budget. Zero-intelligence models can be used to study
the properties of market institutions and to determine
which properties of a market depend on intention and
which don’t. Thus they provide a benchmark to help avoid

getting lost in the large space of realistic human behav-
iors. Once a zero-intelligence model has been constructed,
it can be made more realistic by adding a little intelligence
based on empirical observations or models of learning. 

The zero-intelligence approach can be traced back to
the work of Herbert Simon, a Nobel laureate in economics
and a pioneer in artificial intelligence. The model’s main
champions in recent years have been physicists, who have
used analogies to statistical mechanics to develop new mod-
els of markets. A good example is the work of Per Bak, Maya
Paczuski, and economist Martin Shubik (BPS), who studied
the impact of random trading orders on prices in the con-
text of an idealized model of price formation.8 They assumed
that traders simply place orders to buy or sell at random,
above or below the prices of the most recent transactions.
Traders modify their orders from time to time, moving them
toward the middle until they generate a transaction. The re-
sult is mathematically analogous to a reaction-diffusion
model for a scenario in which the reactants annihilate each
other. Although the BPS model is highly unrealistic, with a
few modifications it produces some qualitative features—
heavy-tailed price distributions, for example—that resem-
ble their counterparts in real markets.

By now, econophysicists have explored many variations
of the BPS model. In one variation, also based on random
trading orders, Marcus Daniels and colleagues performed a
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Figure 2. Common price response for 11 stocks (identified by ticker symbols) from the
London Stock Exchange. The market impact is the price response (change in the loga-
rithm of the average of the best quoted buying price and the best quoted selling price)
induced immediately upon arrival of a trading order yielding a transaction. By conven-
tion, buy orders are positive, sell orders negative. The stocks collapse to a single curve
when the order size and market impact are normalized according to dimensional
analysis as described in ref. 10. The pool is an average of the normalized data for all
11 stocks. (Adapted from ref. 10.) 



dimensional analysis based on prices, shares, and time and
showed that their model obeys simple scaling laws relating
statistical properties of trading order placement to statisti-
cal properties of price.9 These laws, like the ideal gas law,
are restrictions on state variables. In the economics case,
the variables on one side of the equality are properties of
trading orders, such as the rates for order placement and
cancellation, and the variables on the other side are statis-
tical properties of prices, such as the diffusion rate in Bache-
lier’s random-walk model. Such scaling laws have been
tested against real data from the London Stock Exchange
and display surprisingly good agreement.10 The model of ref-
erence 9 has also given insight into the shape of supply and
demand curves, as shown in figure 2.

Minority games
As another alternative to rational choice, econophysicists
have developed highly simplified models of strategic inter-
action to capture the essence of the collective behavior in a
financial market. Brian Arthur’s El Farol bar problem pro-
vides an alternative to conventional game theory. El Farol
is a bar in Santa Fe that is often crowded. In Arthur’s game,
agents decide each day whether to go hear music. If the bar
has room, they are happy; if it is too crowded, they are dis-
appointed. The game is constructed so that only a minority
of the people can be happy, which leads to a phenomenon
analogous to frustration—some desires are necessarily un-
satisfiable. As an additional result of the game’s structure,
an astronomically large number of equilibria can emerge. 

The El Farol game was simplified and abstracted by
Damien Challet and Yi-Cheng Zhang as the minority
game,11 in which an odd number N of agents repeatedly
choose between two alternatives, which can be labeled 0
or 1. Their decisions are made independently and simul-
taneously. Agents whose choice is the minority value are
rewarded, or awarded payoffs, in game-theoretic termi-
nology. Agents are capable of remembering the outcomes
of M prior rounds of play, and they maintain an inventory
of strategies, called lookup tables, that dictate a next move
for each history. The lookup tables are generated at ran-

dom, but the strategy used in any given round is the one
with the best cumulative performance (see figure 3). 

If the agents have at least two strategies, the minor-
ity game will exhibit phase transitions in z ⊂ 2M/N, the
ratio of the number of resolvable pasts to the number of
agents. Figure 4 shows such a phase transition: If z is less
than a critical value zc, the population is in a symmetric
phase and the outcome of the next move is unpredictable
from the history of play. In contrast, for z > zc, the N agents
sparsely sample the space of strategies, the next outcome
is statistically predictable from the history of play, and the
population is in a symmetry-broken phase that can be un-
derstood analytically with so-called replica methods. The
variance in the number of winners about the optimum,
(N ⊗ 1)/2, measures the failure of allocative efficiency and
is minimized at zc.

The minority game is readily extended to incorporate
various features of real financial markets. For example,
buyers or sellers of stocks can reap larger profits when they
are providing the more scarce of supply or demand, and so
the minority game can include payoffs that increase as the
size of the winning group gets smaller. In the “grand canon-
ical” version of the game, players may enter and leave. With
such enhancements, the game self-organizes around the
critical point zc. Moreover, as in real markets, payoffs dis-
play clustered volatility and have a distribution with a
power-law tail. The minority game provides a fascinating
example of how a very simple game can display a rich set of
properties as soon as one moves away from rational choice.

Entropy methods
Finance is not the only area of economics in which physi-
cists are active. Economics, like physics, distinguishes open
systems from closed ones, and that distinction gives rise to
different notions of equilibrium. Markets considered merely
as conduits for goods produced or consumed elsewhere are
described by theories of partial equilibrium that are largely
specified by open-system boundary conditions. Financial
markets are open in this sense. Economists also try to de-
termine the general equilibria of whole societies, taking into
account not only trade but production, consumption, and, to
some extent, government regulation.

Economics and physics have together seen a growth
in understanding of relaxation to equilibrium, when equi-
libria are possible, and whether they are unique. In both
fields, mechanical models were used first, followed by sta-
tistical explanations.12 A recent paper has shown which
subset of economic decision problems has a structure iden-
tical to that of classical thermodynamics and has discussed
the emergence of a phenomenological principle equivalent
to entropy maximization.13 More general equilibration
problems usually considered by economists correspond to
physical problems with many equilibria, such as granular,
glassy, or hysteretic relaxation. The idea that equilibria
correspond to statistically most-probable sets of configu-
rations has led to attempts to define price formation in sta-
tistical terms. As discussed in the box, the related idea that
income distribution seems consistent with various forms
of entropy maximization recasts the problem of under-
standing income inequality and interpreting how much it
really tells about the social forces that affect incomes.

We expect that maximum-ignorance principles will
grow into a conceptual foundation in economics as they
have in physics, and that the roles of symmetry, conser-
vation laws, and scaling will become increasingly impor-
tant.14 Efforts to explain which aspects of market function
or regulatory structure converge on predictable forms, in
a manner relatively free of historical contingency, are
likely to require characterization in those basic terms.
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Figure 3. Lookup tables for the minority game in which
agents base their strategies on the previous two rounds
of play. (a) The table summarizes the strategy of “No
matter what happened in the previous two rounds,
choose 1.” (b) Here the strategy is, “If the previous two
rounds gave the same result, choose the complement. If
the previous two rounds differed, choose the most re-
cent winning value.” Suppose the first 10 rounds of
play yield the values 1100100110. The first two rounds
serve as initial input and the lookup tables give values
to be selected for rounds 3–10. Table a gives the suc-
cessful value three times (red) and table b shows suc-
cess seven times (blue). Thus, the strategy of table b has
the better cumulative performance. An agent playing
the game will consult table b and choose “0” for the
11th round.



Future directions
We expect that within the next few years some physics and
economics departments will design a basic course teaching
the essential elements of both physics and economics.
Physicists will continue to contribute to economics in a va-
riety of subjects ranging from macroeconomics to market
microstructure, and their contributions will have increas-
ing implications for economic policy making.

One area of opportunity, in which the applicability of
physics might not be evident a priori, concerns the con-
struction of economic indices, such as the Consumer Price
Index or the Dow Jones Industrial Average. Those indices
provide only crude scalar summaries of very complex phe-
nomena, but they play an important role in economic deci-
sion making. For example, pension and wage payments are
based on the CPI. 

Economic indices are currently constructed using es-
sentially ad hoc methods. We believe that the accuracy of
such indices could be improved by careful thinking in terms
of dimensional analysis, combined with better data analy-
sis that correlates prices and other factors to appropriate
qualities related to the indices. The construction of accurate
economic indices is ultimately related to understanding why
the economy exhibits so many scale-free behaviors, such as
the distribution of wealth or the size of firms. To shed light
on that question, econophysicists need to better understand

the natural dimensions of economic life, and systematic di-
mensional analysis will be a very useful tool. Dimensional
and scaling methods were a cornerstone in the elucidation
of complex phenomena such as turbulence in fluids, and all
the constituents that make fluid flow complex—long-time
correlations, nonlinearity, and chaos—are likely to be im-
portant factors in the economy.

At the other end of the macro–micro spectrum, ideas
from statistical mechanics could make practical contribu-
tions to problems in market microstructure. Physics-style
models suggest, for example, that price volatility could be
lowered if market rules are changed to create incentives
for “patient” trading orders that are not immediately
transacted.9,10 A related practical problem concerns the op-
timal strategy for market makers, that is, agents who si-
multaneously buy and sell and make a profit by taking the
difference. Though markets are increasingly electronic,
automated market makers are still designed in a more or
less ad hoc manner. A theory for market making based on
methods from statistical mechanics could result in lower
transaction costs and generally more efficient markets.

Several key ideas in physics are of economic origin. A
prejudice that the books should balance was likely re-
sponsible for James Joule’s accounting for heat’s energy
content before the principle of conservation of energy was
well supported by data. The concept of a currency informs
scientists’ view of the role of energy in complex systems,
particularly in biochemistry. Understanding the dynamics
and statistical mechanics of agency promises to expand the
conceptual scope of physics.
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Figure 4. Phase transition in a minority game. Here the
variance of the number of winners, normalized by the
number of agents N, is plotted against an order parame-
ter z ⊂ 2M/N. If z is less than a critical value zc � 0.4,
the variance is high. For subcritical z, the game is highly
inefficient in that the number of winners is much smaller
than it needs to be. The variance is a minimum at the
critical value, and when z is large the variance ap-
proaches the value it would have if all agents made ran-
dom choices. (Adapted from ref. 16.)




