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Although we are accustomed to considering only overall stability properties of dynamical systems, local stability 

properties can also have a dramatic physical effect. Local instabilities in overall stable motion can cause otherwise 

imperceptible ambient noise to be amplified to macroscopic proportions. The result can be easily mistaken for deterministic 

chaos. We give measures for local instability and noise amplification in terms of the covariance matrix and local divergence 

rates and analyze several examples. An experimental test can be made by varying the external noise level; for sufficiently 

small amplitudes, the noisy response due to local instabilities scales linearly with the noise level, whereas noisy behavior due 
to deterministic chaos is largely unaffected. 

1. Introduction 

What is the underlying cause of fluid turbu- 
lence and other irregular, unpredictable, aperi- 
odic, or “noisy” phenomena? We are currently 
offered two choices: One of these, deterministic 
chao?‘, generates “noise” directly from intrinsic 
dynamics, without any need for external pertur- 
bations. The other choice, “stochastic behavior”, 
is more vague; typically this phrase is applied to 
phenomena such as thermal motion, where the 
dynamics are so complicated as to preclude any 
detailed description [2]. In experimental studies 
of noisy phenomena such as fluid turbulence, the 
question often arises: Is aperiodic behavior in- 
trinsic to the macroscopic equations of motion, or 
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#‘For a review on the subject of deterministic chaos, see, 
e.g., ref. [I]. 

is it caused by external stochastic influences, such 
as thermal motions or fluctuations in the bound- 
ary conditions#*? 

This paper expands on ideas presented in a 
previous paper [3], which in turn expanded on 
ideas presented in a paper by Shaw (appendix in 
ref. [l]). The central point is that the answer to 
the question posed above is not necessarily clear- 
cut. A dynamical system can strongly amplify 
stochastic influences initiated from the external 
environment without spontaneously generating 
“noise” or “chaos” of its own accord. The result 
is noisy behavior that would not be observable 
without the action of deterministic dynamics, but 
cannot be sustained by deterministic dynamics 
alone. One mechanism by which this can happen 

#2External in this sense means, “external to the system 
under consideration”: if we want to consider properties of the 

Navier-Stokes equations, for example, thermal motions are 
“external” to our system, even though the fluid is made of 

molecules. 
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is straightforward: Local instabilities in phase 

space cause fluctuations to be temporarily ampli- 

fied, even though deterministic motion is quite 

stable when averaged over the long term. Al- 

though it is obvious that this can occur, this 

phenomenon has received very little study. This is 

dangerous, since such behavior can be easily con- 

fused with deterministic chaos. There is, however, 

a simple test to distinguish the two types of 

behavior which should be implemented in experi- 

ments where the ultimate source of aperiodic 

behavior is in question. 

A point in a region of local instability can be 

strongly influenced by external no&c. Perhaps the 

most familiar case where this occurs is determin- 

istic chaos. As pointed out by Shaw [ll, positive 

Lyapunov exponents imply noise amplification, 

and the spontaneous production of new macro- 

scopic information through the amplification of 

small fluctuations. Existence of deterministic 

chaos is not, however, necessary for this to occur. 

If an instability is of sufficient strength and dura- 

tion, departures from a deterministic trajectory 

may be dramatic, causing unpredictable, chaotic- 

looking behavior, even on a deterministic trajec- 

tory that is asymptotically stable. Note, though, 

that this requires ongoing fluctuations, since when 

motion is asymptotically stable small perturba- 

tions of initial conditions are unimportant. Thus, 

such behavior might be called “sensitive depen- 

dence to noise without sensitive dependence to 

initial conditions” [3]. Deterministic chaos. in 

contrast, produces sensitive dependence to both 

noise and initial conditions. Deterministic chaos 

persists in the limit where the external noise goes 

to zero, spontaneously generating irregular be- 

havior without outside help, whereas instabihties 

that are merely local have no effect on purely 

deterministic motion. Nevertheless, it is possible 

for local instabilities to amplify otherwise imper- 

ceptible fluctuations, creating perceptible macro- 

scopic fluctuations that can be easily mistaken to 

be the result of deterministic chaos. 

Before giving some examples we now define 

more precisely what we mean by local instability. 

2. The covariance matrix, local divergence rate, 

and noise amplification 

Consider a dynamical system F. Assume the 

random influences on F are additive, so that the 

system under consideration is of the general form 

i=F(x.t) +a*q(f), (1) 

where v - q(t) represents ongoing external ran- 

dom perturbations. We assume that each compo- 

nent of 17 is a Gaussian white noise with a stan- 

dard deviation of 1. In component form cq. (1) is 

written 

i,=FJx,,t)+ &,,Q). (2) 
;- I 

where cl is the dimension of the system. The 

equation for the unperturbed orbit is 

where the superscript (u) refers to the unper- 

turbed solution. Subtracting eq. (3) from eq. t2), 

and assuming that u!, is small so that we may 

linearize, gives for the deviation from the unper- 

turbed orbit 6x, -x, -XI”’ 

(4) 

Define the covariance matrix by K,, = ((6.x, - 
(6x,))(Sx, - (6x-,))), where the brackets signify 

the expectation value or the ensemble average. 

Since eq. (4) is linear, it may be shown from the 

theory of stochastic differential equations [2] that 

K,, satisfies the equation 

(5) 
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The trace of Kjj gives the variance local divergence rate [4-61 defined by 

(K- C((6Xi-(SXi))‘)) i 
from the deterministic orbit 

d 
K = c Kji. (6) 

i=l 

Noting that the deviation along the orbit is 6u,, = 
(C,SX,~~)/(C~X~>‘/~ (i.e. the projection of 6xj in 
the direction of ii), we find for the variance 
along the orbit K,, = ((Su,, - (Su,, )j2) 

(7) 

Also, subtracting the component of iSxi along the 
orbit from &xi, we find for the variance perpen- 
dicular to the orbit 

K.=K-K,,. (8) 

The covariance matrix Kjj may be calculated by 
solving eq. (5) along with eq. (3). Eqs. (61, (7), and 
(8) may then be used to calculate the variance, 
the variance along the orbit, and the variance 
perpendicular to the orbit, respectively, from the 
deterministic orbit due to the presence of the 
Gaussian white noise, as long as the magnitude of 
the noise is small enough to justify the lineariza- 
tion assumption of eq. (4). This then is a deter- 
ministic quantity that will clearly show in which 
regions noise will be amplified. K,, will give the 
amount of diffusion along the orbit and K, will 
give the amount that the orbit is smeared out due 
to the presence of the noise. We note that even 
when the amplification is sufficiently large so that 
nonlinearities are important, eqs. (5), (61, (71, and 
(8) may still be used to see in which regions noise 
will be amplified, although the correct magnitude 
of the amplification will not be given. 

Another quantity which is useful in determin- 
ing in which regions noise will be amplified is the 

(9) 

where the separation 6x, between two nearby 
orbits is given by integrating (from eq. (3)) 

d aF 
ui = c &6Xj. 

;=, I 

In eq. (9) one may take an orthonormal set of 
vectors 6~:“’ which are the principal axes of a 
d-dimensional ellipsoid, where each point on the 
ellipsoid evolves according to eq. (lo), to define 
the local divergence rate in various directions. 
The time average of these quantities is simply the 
Lyapunov exponents [71 

A, = cyn( t)), = lim f/‘y,(t) dt. 
f-m 0 

Explicitly taking the time derivative in eq. (9) and 
using eq. (10) gives for the local divergence rate 
in the direction of 6x; 

Y(t) = 
Cj,j=,Gx,(aFj/ax,)6xj 

c;=,sX? . (11) 

Taking 6x, in the direction of ii by letting 6xi = 
Nii, where N is an arbitrary normalization con- 
stant, and inserting this into eq. (11) and using 
eq. (3) gives for the local divergence rate along 
the flow 

y,,(t) = 
CP,,=,1T';(a&/axj)F 

c;=,F; . (12) 

For a periodic orbit the time average of this 
quantity is zero corresponding to the largest Lya- 
punov exponent (i.e. A, = ( y,,(t)), = 0). Also, for 
a periodic orbit, the time average of the local 
divergence rate perpendicular to the flow y,, 
gives the second largest Lyapunov exponent (i.e. 
A, = ( y I (t>),>. For the two-dimensional flow 
i =f(x, y) and 9 = g(x, y) we may get an explicit 



expression for y i by taking (Sx,6y) in the 

direction perpendicular to the orbit by letting 

(6x, Sy) = N( -Y, ix>, where N is an arbitrary nor- 

malization constant. Inserting this into eq. (11) 

gives 

- [(VPY) + @0x)l&/(f2 +g2). 

( 13) 

-r ” “““I 4 
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t 

In any region for which y,, > 0 noise will be 

amplified along the flow increasing the rate of 

phase diffusion; and in any region for which 

y ~ > 0 noise will tend to be amplified perpendic- 

ular to the flow smearing out the orbit in these 

regions. Although in most cases y,, > 0 and y L > 0 

may be good indicators for local instability paral- 

lel and perpendicular to the orbit, respectively, 

there may be cases, as noted below, in which 

y ~ > 0 may not be such a good indicator. For this 

reason we defined local instability in terms of the 

covariance matrix. 

0 10 20 30 40 50 60 

1 

Fig. I. (a) A typical trajectory of rq. (14) with A(t) = 

k sin(wr) + C, where k = 76. c = 2. and the noise is introduced 

by adding a random number uniformly distributed hetwcen 

-0.9 x IO ’ and 1.1 x IO ’ to .Y at each time step II = 0.01. 

(h) A typical trajectory of z(t) on the chaotic Rkler attrac- 

tor. eq. (2.1). with rr = 0.2. h = 0.2. and c = 4.6. 

3. Examples 

We now consider a few examples to make the 

above concepts clearer. 

Example 1: A fixed point of modulated stability. 
Suppose F has a fixed point attractor x{, that is 

stable on the average, but has temporary periods 

of instability. During stable periods, the orbit will 

remain close to x0, but the noise q(t) will pre- 

vent the orbit from ever completely settling onto 

x,,. If xc, temporarily becomes unstable, however, 

the orbit will exponentially move away with a 

magnitude and direction that depend sensitively 

on the position of the orbit at the onset of the 

instability. When stability resumes, the orbit will 

return to the vicinity of the fixed point. Thus, 

instabilities cause “chaotic” pulses, whose ampli- 

tude and direction in phase space vary unpre- 

dictably. 

where A(t) is any periodic function with period T 
such that there are values of t for which A(t) > 0, 
yet j,rA’A(t) < 0. For instance, let A(t) = k sintot) 

+ c, where c < 0 and Ik ) > Ic / A typical trajec- 

tory x(t) consists of pulses of random height and 

sign. On the surface this is quite similar to the 

behavior of some systems with strange attractors, 

such as z(t) of the Rossler attractor 181. The 

resemblance to the Rossler attractor is even more 

pronounced if the noise is biased so that the 

fluctuations q(t) all have the same sign, as shown 

in fig. 1. 

The resemblance between these two types of 

motion disappears completely when the external 

noise is removed. When u = 0, x(t) = 0 for eq. 

(14), while motion on the Rossler attractor is 

virtually unaffected. 

For example, consider the simple equation 

From eq. (5) we find that the variance K from 

the deterministic orbit satisfies 

i=A(t)x+q(t), ( 141 k=2A(t) K+(T?. (15) 



R.J. Deissler, J. D. Farmer /Deterministic noise amplifiers 159 

Since we are interested in the asymptotic state, 

the initial variance is arbitrary. For convenience 

we take an initial variance of 0, giving as a 

solution of eq. (154, 

K(t) =n2exp(2_/2(s)du) 

X _/)‘exp( -2_/-(r) dr) ds. (16) 

It is difficult to see the behavior from eq. (16) 

without looking at a specific example, so we now 

consider a special case in which the integrals can 

be done exactly. Let A(t) be a square wave of 

amplitude a with an offset -c, 

A(t) = -a-c if m7 I t < (m + $)T, 

=a-c if (m + +)r 5 t < (m + 1)~. 

(17) 

The purely deterministic system (U = 0) has a 

fixed point at x = 0. For c > 0, this fixed point is 

overall stable, and is the global attractor of the 

system. When a > c, the instantaneous stability 

changes sign at periodic intervals. 

For large times we find during the stable phase 

K,(t) =Bs(7,u)exp[2(a+c)(~7-t)] 

u2 
+ 2(a +c) ’ (18) 

where M = Int(t/T) (“Int” means “the integer 

part of”) and 

au2 
B,(T,o-) = --y--y 

i 

exp(2cr) - exp[(a + c)Tl 

a -c 1 - exp(2cT) i 

and during the unstable phase 

K,(t) =Bu(7,w)exp[2(c-a)(MT-t)] 

u2 - 
2(u -c) ’ (19) 

where 

au2 
B”(7, a) = y----y 

x exp[2(c - u)~] - exp[(3c - a)T] 

1 - exp(2cr) 

Note that eqs. (18) and (19) satisfy eq. (15) 

and the matching conditions K,[(m + i>r] = 

K,[(m + i)rl and K,[rn~ + E] = K,[mr - E], 

where E + 0. Although these expressions are 

messy, the essential features are seen by noting 

that over the stable phase the variance is damped 

with damping rate 2(a + c) and over the unstable 

phase the variance is amplified with growth rate 

2(a -cl. Therefore, the result is a sequence of 

pulses of random amplitude, occurring at peri- 

odic intervals. As u + 0, so does K, and the 

chaotic-looking behavior disappears. 

It is also interesting to look at the case c = 0, 

which represents a diffusion process. In this case 

we find 

K,(t) = <exp[2a(A4-t)] 

X{[exp(aT) - l]M- +} + c (20) 

and 

K,(t)=$exp{-2a[(M+f)T-t]} 

X[(l-exp(ar))(M+$)+i] +<. 

(21) 

If A(t) = 0 we instead have the usual diffusion 

equation K(t) = a2t (see eq. (15) with A = 0). 

The important point to note here is that the 

diffusion rate can be much larger when there 

are regions of expansion and contraction. For 

example, at the phase of maximum amplitude, 

t = rn7, K,,,(t) = u,f,,t, where cr,,& = (a2/aT) X 
[exp(aT) - 11. At the phase of minimum ampli- 

tude, t = Cm + ih, K,,,,,(t) = u,$“t, where a,& = 

(u2/a7>[1 - exp(-ar)]. Also, K averaged over 
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Fig. 2. The RGssler attractor, eq. (22), for rr = 0.2, h = 0.2 

and c = 2.6. A point on the orbit moves in a counterclockwise 

direction. 

one cycle is K,,,(t) = u&t, where s,t, = 

2(a/ar)*[cosh(ar) - 11. For ur -SC 1, a,&,, &,, 

and a& all reduce to the usual diffusion rate of 

CT*. However for larger values of UT, a,&, and 

a,& can be much larger than c2. 

Example 2: A limit cycle with a local instability. 
The example above (for c > 0) is a limit cycle in 

disguise. When viewed as an autonomous system 

of equations, a fixed point of modulated stability 

becomes a limit cycle with the special property 

that added noise does not affect the phase. How- 

ever, in general, local instabilities will amplify 

noise so as to influence both amplitude and phase. 

As an example of a limit cycle we consider the 

Rossler equations [S] 

i= -(y+z), 

y=x+ay, 

i=b+z(x-c). (22) 

Fig. 2 shows the orbit in the x-y plane. We first 

solved eq. (5) (where x =x1, y =x2, and z = xj 

and with uIj = uSij) along with eq. (22) and used 

eqs. (6), (7), and (8) to calculate the variance K, 
the variance along the orbit K,, , and the variance 

perpendicular to the orbit K I , respectively. Fig. 

3 shows the square root of these quantities for 

twenty orbits starting with an initial variance of 

zero, where t = 0 corresponds to y = 0 (x > 0). 

After the system reaches an asymptotic state K 

,’ 
o-. ,,, ,,,,, II8III,,, /WI, ,I 

0 23.02 46.04 69.06 92.08 115.10 

52 
(b) 

2 

0 I’ ““’ “‘I” 

0 23.02 46.04 69.06 92.08 115.10 

t 

F2 
1 (d 

o’, ,,,, ,,,,,, ,, .,,, 
0 23.02 46.04 69.06 92.08 i .lO 

Fig. 3. (a) The standard deviation from a deterministic trajec- 

tory in the linearized limit due to the presence 01‘ Gaussian 

white noise with standard deviation CT = I for twenty cycles 01 

the Riissler attractor. / = 0 corresponds to y = 0 (I > 0) in fig. 

2. (h) Standard deviation parallel to the orbit. Cc) Standard 

deviation perpendicular to the orbit. 

and K,, continue to increase linearly on the aver- 

age corresponding to diffusion along the orbit, 

whereas K I levels off on the average. Note that 

the diffusion rate is larger in regions where K 
and K,, are large. 

We also plot the local divergence rates parallel 

(from eq. (12)) and perpendicular (by calculating 

the separation between two nearby states using 

eq. (10) and subtracting the component along the 

flow at each time step) to the orbit as a function 
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b) 
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Fig. 4. (a) The local divergence rate parallel to the orbit for one cycle of the Riissler attractor. (b) The 

perpendicular to the orbit. 

local divergence rate 

Fig. 5. (a) The standard deviation parallel to the orbit from a deterministic trajectory in the linearized limit due the presence of 

Gaussian white noise with standard deviation (T = 1 for one cycle of the Riissler attractor. (b) The standard deviation perpendicular 

to the orbit. 

of time for one orbit. Fig. 4 shows the result. Fig. 
5 shows & and K as a function of time for 
one orbit. Comparing fig. 5 with fig. 4 we see that 
the variance tends to increase in regions where 
the local divergence rate is positive. Although y I 
gives a good measure here for noise amplification 
perpendicular to the orbit, this will not be neces- 
sarily true in general for systems with dimension 
three or greater. This is so since, if the orbit goes 
below the noise level (i.e. K < (+*I, a determinis- 
tic trajectory will be entirely lost and even though 
y2 < 0, y, for some value of II > 2 may be greater 
than 0 causing noise to be amplified (see discus- 
sion following eq. (10)). In these cases it will be 
necessary to calculate K I which will be a reli- 

able measure for noise amplification perpendicu- 
lar to the orbit. 

Referring to fig. 5b we would expect significant 
noise amplification for the Rijssler equations. 
Figs. 6a and 6b show plots of the z component of 
the Riissler equations as functions of x and t, 
respectively, with a Gaussian white noise of stan- 
dard deviation lop3 added at each time step 
(At = 0.01). (Note that since the noise is added 
discretely at each time step, this corresponds to 
u = 10-3/(At)‘/2 = 0.01 in eq. cl).) We see that 
there indeed is significant noise amplification, for 
without noise the orbit is strictly periodic. 

Fig. 7 shows the standard deviation perpendic- 
ular to the orbit for one cycle of the Rijssler 
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Fig. 6. A typical trajectory of z on the Riissler attractor as a function of x and r, with the same parameter values as those in tig. 2. 

but with a Gaussian white noise of standard deviation IO ’ added to 1. .v. and ; at each time step A/ = 0.01. 

0 1.15 2.30 3.45 4.60 5.75 

t 

Fig. 7. The standard deviation perpendicular to the orbit 

from a deterministic trajectory from a direct numerical simu- 

lation with the same noise as that in fig. 6 for one cycle of the 

RGssler attractor. 

attractor for the same noise used in fig. 6 from a 

direct numerical simulation. This was accom- 

plished by creating 1000 bins along the determin- 

istic orbit, binning the noisy orbit in these bins, 

and calculating the perpendicular distance from 

the deterministic orbit. Comparing fig. 7 with fig. 

5b we see that-they agree well showing that the 

amplitude of the noise is such that the lineariza- 

tion approximation is still nearly valid. We note 

that the above direct calculation requires a sub- 

stantial amount of programming and computer 

time as compared with the much simpler task of 

solving eq. (5). 

Example 3: Statistical limit cycle. Another ex- 

ample is the statistical limit cycle [9. 101. In mod- 

eling the onset of rotating convection Busse 

derives the following equations. 

i=(l -x-Pr-yz)x, 

.i=(l-)‘-/3-yx)y, 

i=(l -z-px-yL’)z. (23) 

The variables x, J’, and z represent three possi- 

ble orientations of the convection rolls, which 

make 120 degree angles relative to each other. 

This same set of equations was originally derived 

by Leonhard and May [l 11, but in the context of a 

population biology problem. They have the re- 

markable property that for /3 < 1 or y < 1 and 

(p + y) > 2 the attractor is a heteroclinic cycle, 

i.e., the stable manifold of one fixed point is the 

unstable manifold of another, forming a cycle. A 

special case, called a homoclinic cycle occurs when 

the unstable manifold of a single fixed point joins 

smoothly onto the stable manifold. Since this 

cycle contains a fixed point, in the case of no 

applied noise the period is infinite. When noise is 

applied, however, a region of local instability near 

the fixed point (along the stable manifold) ampli- 

fies any external noise, carrying the orbit past the 

fixed point. The average period of the noisy sys- 

tem is therefore finite. Note that a homoclinic 01 

heteroclinic cycle necessarily contains a region of 
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local instability where the stable manifold is close 
to the fixed point(s). 

4. Comparison to other types of noise 

amplification 

The mechanism for noise amplification dis- 
cussed above is not the only mechanism for noise 
amplification. Before proceeding we compare with 
a few other methods. 

Critical phenomena or bifurcations. At a bifur- 
cation parameter value a dynamical system be- 
comes overall neutrally stable. The result is that 
orbits are “unrestrained”, and in the presence of 
noise a point in phase space can execute a ran- 
dom walk and thus make large fluctuations [12, 
131. Before proceeding we need to distinguish 
between a neutrally stable system of constant 
stability and a neutrally stable system of modu- 
lated stability. If the stability is constant in time 
then the growth rate of the variance is linear with 
growth rate (+*. This behavior is clearly different 
from the exponential growth of fluctuations over 
an unstable phase as discussed in this paper. 
However, if the stability of an overall neutrally 
stable system is modulated as in eqs. (20) and (21) 
or as in a periodic orbit at a bifurcation point, the 
effect studied in this paper is present. Over short 
times there is exponential growth of fluctuations 
over an unstable phase, and over long times the 
growth rate of fluctuations is diffusive, but the 
diffusion rate can be much larger, as discussed 
following eq. (21). 

Noise induced deterministic chaos. At parame- 
ter values where regular behavior occurs, but 
where there is deterministic chaos nearby, the 
addition of external noise can cause a transition 
to chaos. In this case, discussed extensively in ref. 
[14], the noise effectively acts to shift the bifurca- 
tion parameter value so that the transition from 
periodicity to chaos occurs earlier. 

Metastability. Fluctuations whose amplitude 
exceed a certain critical size can induce transi- 
tions between the basins of two attractors, or 

between two different wells of a potential [15, 161. 
In order to make a transition between two re- 
gions of stability it is necessary to pass through a 
region of instability (assuming the dynamical sys- 
tem is smooth). Thus, in a sense this is a special 
case of the phenomenon discussed here. An im- 
portant difference between this and examples l-4 
is that the instability is not on the attractor, so 
that exponential noise amplification is a rare event 
and only occurs for perturbations exceeding a 
certain critical size. 

Convective instabilities. In a spatially extended 
system a localized perturbation can be carried 
along by the mean flow so that it grows only in a 
moving frame of reference, eventually damping at 
any given stationary point. In the deterministic 
limit there is no motion. If there are ongoing 
perturbations, however, the resulting behavior 
downstream in the stationary frame of reference 
looks very much like deterministic chaos. Three 
systems that exhibit this behavior have been stud- 
ied: A one dimensional lattice of quadratic maps 
with asymmetric coupling [17], the one-dimen- 
sional Ginzburg-Landau equation [18], and the 
Kuramoto-Sivashinsky equation [ 191. In all cases, 
the effect is quite dramatic: In the absence of 
perturbations the system remains at rest, but the 
application of an imperceptible amount of noise 
creates an expanding chaotic-looking “wake” as 
it propagates downstream. 

5. Prevalence, observability, and experimental 

consequences 

In general, there is no reason to expect that 
local stability will be constant. In the typical case 
local stability varies from place to place, and 
there is nothing to prevent the local divergence 
rate from changing sign. This behavior is likely to 
be especially common near bifurcations; if the 
asymptotic local stability is close to neutral, then 
even small variations in local properties will cre- 
ate instabilities. Prior to the loss of overall sta- 



bility, in the general case certain regions will 

become locally unstable before others. 

In order for noise amplification to become 

observable, however, there are quantitative con- 

straints. In particular, the combination of ampli- 

fication and external noise must be large enough 

to generate a detectable signal. The observation 

of deterministic noise amplification depends on 

the precision of measurements as well as on the 

intrinsic dynamics and the level of external fluc- 

tuations. Standard examples such as the Rossler 

equations show noise amplification. Although the 

effect is not very large it can be quite significant 

as shown in fig. 6. 

The primary motivation of this paper is the 

interpretation of experimental results. As already 

demonstrated in fig. 1, local noise amplification 

can be easily confused with deterministic chaos. 

In fact, one of the initial motivations for this 

paper came serendipitously during an experiment 

with electrical circuits by one of the authors 

(J.D.F.). In simulating a simple damped harmonic 

oscillator on an analog computer, rather than 

relaxing to a simple point in the phase plane, the 

trajectory sporadically spiraled out. This turned 

out to be due to a bad operational amplifier. The 

stability of the amplifier varied with time, produc- 

ing a circuit that is a second order analog of eq. 

(141, with periods of time in which the effective 

damping coefficient changes sign. 

In experiments in which it may be suspected 

that external noise is playing an important role in 

the observed dynamics, the definitive test is to 

vary the external noise level and examine the 

response of the system. Since it is difficult to 

reduce the noise level in an experiment, the sim- 

plest method is to raise the noise level by adding 

additional noise to the system [3]. 

6. Conclusions 

When driven by external noise, local instabili- 

ties in otherwise stable dynamical motion can 

cause behavior that looks quite similar to deter- 

ministic chaos. Microscopic fluctuations are 

thereby amplified to generate irregular macro- 
.scopic fluctuations in both the amplitude and 

phase of a signal. In contrast to dctcrministic 

chaos, however, chaotic-looking behavior gener- 

atcd by local instabilities disappears when exter- 

nal noise is removed. 

It seems quite likely that behavior of the type 

discussed here is often confused with determinis- 

tic chaos. In an experiment where local instabili- 

ties are suspected the best method to make the 

distinction from deterministic chaos is to add 

external noise to the dominant source, and test 

for linear scaling of the amplitude of noisy behav- 

ior with the amplitude of the external noise. 

In the wake of the revelations brought about by 

the discovery of deterministic chaos, the phenom- 

ena described in this paper are not very surpris- 

ing. It is perhaps in part the very simplicity of this 

phenomena that has caused it to be overlooked. 

In spite of its simplicity, this behavior is probably 

common, and the distinction between this and 

deterministic chaos should be made clear. In any 

case, the experimental test suggested here should 

be made in any cases in which there is doubt 

regarding the source of aperiodic behavior. 
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