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Highly optimized tolerance is a model of optimization in engineered systems, which gives rise to
power-law distributions of failure events in such systems. The archetypal example is the highly optimized
forest fire model. Here we give an analytic solution for this model which explains the origin of the power
laws. We also generalize the model to incorporate risk aversion, which results in truncation of the tails
of the power law so that the probability of disastrously large events is dramatically lowered, giving the
system more robustness.
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In a series of recent papers, Carlson and Doyle [1–3]
have proposed a model for designed systems which they
call “highly optimized tolerance,” or HOT. The funda-
mental idea behind HOT is that systems designed for high
performance naturally organize into highly structured, sta-
tistically unlikely states that are robust to perturbations
they were designed to handle, yet fragile to rare pertur-
bations and design flaws. As an example, they consider an
idealized model of forest fires [2]. In this model, a forester
is charged with finding the optimal distribution of the trees
on a grid so as to maximize tree harvest in the face of occa-
sional fires that burn complete connected clusters of trees
and are started by sparks that arrive with a given spatial dis-
tribution. They find that optimizing the harvest, or yield,
for the model gives rise to a segmented forest consisting
of contiguous patches of trees separated by firebreaks, and
that the resulting distribution of fire sizes usually follows
a power law. While this type of configuration does typi-
cally achieve very good yields, the system is also fragile in
the sense that perturbations to the firebreaks or changes in
the spark distribution can lead to substantially suboptimal
performance. They argue that these are pervasive phenom-
ena: High-performance engineering leads to systems that
are robust to stresses for which they were designed but
fragile to errors or unforeseen events.

In this paper we argue that simple yield maximization
is problematic even if there are no errors in firebreaks or
changes in the spark distribution. Because the power-law
distributions generated by yield maximization have fat
tails, disastrously large forest fires occur with non-
negligible frequency — far greater frequency than one
would expect from intuition based on normal distributions.
This idea, that yield optimization can lead to ruinous out-
comes, is not new. For the classic problem of gambler’s
ruin, for example, it is well known that optimizing total
return leads to ruin with probability one. By contrast, if
one is willing to accept suboptimal returns, it is possible
to construct gambling strategies that are immune to ruin
[4]. Applying similar ideas in the present context, we
show that a risk-averse engineer who is willing to accept
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some loss in average system performance can effectively
limit the large deviations in the event size distribution so
that disasters are rare. We call this variation on the HOT
theme “constrained optimization with limited deviations,”
or COLD. By avoiding total ruin, a COLD design is
more robust than a HOT one, even in a world of perfect
error-free optimization.

To demonstrate the difference between HOT and COLD,
we first revisit the HOT forest fire model. We give an ana-
lytic solution for the model which shows that the distri-
bution of fire sizes does indeed follow a power law, the
cumulative distribution having an exponent 2�1 1 1�d�,
where d is the dimensionality of the system. Using a fast
percolation algorithm [5], we perform numerical simula-
tions that confirm the value of this exponent. We then gen-
eralize our solution to include risk aversion in the design,
thereby breaking the power-law scaling and dramatically
reducing the frequency of disastrously large events.

Following Refs. [1,2] then, we consider a forest divided
into a large number of regions or patches, with firebreaks
between them that prevent the spread of fire from one patch
to another. Although the original forest fire model was
based on a lattice, the model we consider is a continuum
one, since this makes the mathematical treatment more
tractable. For large system sizes, we expect the behavior
of this continuum model to converge to that of the lattice
model.

It is assumed that during the lifetime of the forest a
single spark lands at a random position r and starts a
fire that burns the surrounding patch. Let us denote the
area of this patch by s�r�. The forest is then harvested,
giving a yield equal to the area of the remaining forest.
In units where the total area of the forest is one, the yield
is 1 2 s�r� 2 F, where F is the cost in terms of yield of
constructing the firebreaks.

Because dimensionality is an important property of HOT
systems, we consider the model for general dimension d.
If the cost of constructing firebreaks is a per unit length
(or per unit surface area for d . 2), then the cost of the
firebreak surrounding a patch m is agds�d21��d

m , where sm
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is the value of s�r� in patch m and g is a geometric factor of
order 1 that depends on the geometry of the lattice and the
shape of the patches. In the lattice version of the forest fire
model, a is simply equal to the lattice parameter (i.e., the
nearest-neighbor spacing), but in the continuum model we
are at liberty to give a any value we feel to be appropriate.
As we will see, as long as a is finite its value does not
affect the shape of the distribution of fire sizes.

Because s�r� is constant inside each patch, the inte-
gral of 1�s�r� over any patch is identically 1, and, hence,
summing over all patches, the total area occupied by fire-
breaks is

F � agd
X
m

s�d21��d
m � agd

X
m

s�d21��d
m

Z
m

ddr

s�r�

� agd
Z

s�r�21�dddr . (1)

Letting the normalized probability distribution of sparks
be p�r�, the mean yield is then

Y � 1 2
Z

p�r�s�r� ddr 2 agd
Z

s�r�21�d ddr , (2)

where the integrals run over the entire area of the forest.
To find the maximum yield with respect to the patch

sizes s�r�, we set the functional derivative dY�ds�r� � 0,
giving

s�r� �

∑
ag

p�r�

∏d��d11�
, (3)

for all r. The optimal yield is then given by substituting
back into Eq. (2) to get

Yopt � 1 2 �d 1 1� �ag�d��d11�
Z

p�r�1��d11� ddr , (4)

and the optimal number of patches is

n �
Z ddr

s�r�
� �ag�2d��d11�

Z
p�r�d��d11� ddr . (5)

For the lattice version of the model, a goes as L21, where
L is the (linear) system size, and, hence, the number of
patches should scale as Ld��d11�, i.e., as L1�2 in one di-
mension or L2�3 in two. Numerical experiments on a
one-dimensional system confirm this, giving a measured
exponent of 0.47 6 0.03.

Now we wish to calculate the distribution r�s� of fire
sizes that arises if we make this choice of patch sizes.
We have

r�s� � p�r�
ddr
ds

� p�r�
ddr
dp

dp
ds

� 2ag
d 1 1

d
p�r�

ddr
dp

s2�211�d�, (6)

where ddr here represents the volume of the space between
the contours p and p 1 dp on the p�r� surface. As we
will show, the term p�r�ddr�dp is constant or contributes
logarithmic corrections for a wide selection of possible dis-
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tributions p�r�, while the principal power-law behavior in
the event size distribution comes from the factor s2�211�d�.

An alternative method for deriving Eq. (6) is to maxi-
mize the simple yield functional Y � 1 2

R
p�r�s�r� ddr,

subject to a constraint that fixes the volume F occupied by
the firebreaks [Eq. (1)]. This method, which is similar to
the approach taken in Ref. [1], is equivalent to the method
above, via a Lagrange transform, provided F is chosen so
as to make the corresponding Lagrange multiplier equal
to agd.

Consider then the case (which covers all the examples
in Refs. [1,2]) of a distribution of sparks with a single
maximum at the origin, so that the volume ddr takes the
form of an annulus enclosing the origin. If we denote by
Vd a d-dimensional solid angle centered on the origin,
then a volume element of the annulus is rd21drdVd . In
terms of the thickness dp of the annulus, we can write
dr � �rdp���r ? =p�, and integrating our volume element
over the contour p � const we find

ddr
dp

�
I

p

rd dVd

r ? =p
. (7)

For example, Carlson and Doyle [1] studied the case of
a spark distribution in two dimensions having the form of
the product of two Gaussians with different widths:

p�r� � N exp

µ
2

∑
x2

2s2
x

1
y2

2s2
y

∏∂
, (8)

where N is a normalization constant. For this distribution,
the denominator of the integrand in Eq. (7) is

r ? =p � 2N

∑
x2

s2
x

1
y2

s2
y

∏
exp

µ
2

∑
x2

2s2
x

1
y2

2s2
y

∏∂

� 2p log
p
N

, (9)

which is constant over our contour of constant p. The
element of solid angle in two dimensions is simply the
element of polar angle du, and, hence, Eq. (7) simplifies
in this case to

d2r
dp

�
1

2p log� p�N �

I
p

r2 du �
A� p�

p log� p�N�
, (10)

where A�p� is the area enclosed by the contour. This
contour is a line of constant �x�sx�2 1 �y�sy�2, i.e.,
an ellipse, which has major and minor axes a �p

2s2
x log�N�p� and b �

q
2s2

y log�N�p�. Thus the
area enclosed by the contour is A�p� � pab � 2p 3

sxsy log�N�p�. Combining Eqs. (6) and (10), we then
find that the distribution of event sizes is

r�s� � 3psxsyags25�2. (11)

Thus, for the Gaussian case in two dimensions the model
generates a perfect power law with slope 2

5
2 .

This argument is easily generalized to other spark dis-
tributions and other dimensions. We find that the HOT
forest fire model generates a perfect power law with slope
2�2 1 1�d� for all dimensions when a spark distribution
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of the form p�r� � N exp�2
Pd

i�1�xi�si�d� is used. As
a test of this prediction, we show in Fig. 1 numerical re-
sults from direct simulations of the forest fire model in
one and two dimensions with distributions of this type.
For better visualization and analysis, the distributions pic-
tured are cumulative, so the expected slope is 2�1 1 1�d�,
rather than 2�2 1 1�d�. As the figure shows, the slopes
of the observed distributions are in good agreement with
this prediction.

We note in passing that the slope of 2�1 1 1�d� for
the cumulative distribution of fire sizes seen in both our
exact solution and our numerical results is different from
the slope of approximately 21 found numerically by
Carlson and Doyle [2] in two dimensions. The source
of this discrepancy is unclear, although it is likely that
the simulations of Ref. [2] provided too few data points
to make an accurate evaluation of the exponent possible.
Our simulations were carried out using a finer grid size,
and the results were averaged over a variety of different
values of the parameters of the spark distribution to give
better statistics for the fire size distribution. We note also
that the value 2

3
2 for the exponent in the two-dimensional

case is quite different from the value of 2
1
2 measured for

real forest fires [3,6].
Other functions with exponential tails also generate

power laws, but give logarithmic corrections as well. For
instance, if p�r� � N exp�2

Pd
i�1�xi�si�g� with g fi d,

then Eq. (10) still applies, but now A�p� � �log�N�p��d�g

and, hence, p�r�ddr�dp � �log�N�p��d�g21. Thus, the
distribution of event sizes fundamentally still follows a
power law with slope 2�2 1 1�d�, but there is a logarith-
mic correction. Similar logarithmic corrections are noted
in Ref. [1].
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FIG. 1. Cumulative distribution of fire sizes for simulations
of the forest fire model in one and two dimensions, plotted on
logarithmic scales. (a) One dimension with size 10 000 and
an exponential spark distribution. (b) Two dimensions with
size 128 3 128 and a Gaussian spark distribution. The results
have been averaged over a number of different values of the
parameters of the spark distributions to improve the statistics.
The dotted lines show the expected slopes of 22 and 2

3
2 .
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Spark distributions with power-law tails also (unsur-
prisingly) give power-law event size distributions, but in
this case the exponent of the distribution is nonuniversal,
varying with the exponent of the spark distribution. For
example, if p�r� takes the generalized Lorentzian form
p�r� � N��

P
i�xi�si�n� 1 Gn�, then we find

ddr

dp
�

1
p�r�

µ
N

p
2 Gn

∂d�n21

, (12)

which goes asymptotically as p2d�n in the power-law tail
where p�r� becomes small. Thus, the tail of the distribu-
tion of event sizes goes as r�s� � s2�211�d2d�n�.

We now turn to the COLD variant of the forest fire
model, which incorporates risk aversion. In construct-
ing this model we are guided by theories of risk aversion
in economics, where the subjective benefit of outcomes
is typically a nonlinear function of the loss s, which is
captured by a utility function u�s� [7]. Sensible utility
functions are decreasing with increasing loss: u0 , 0 [8].
Risk aversion also implies that u00 , 0, so that the nega-
tive utility of bad outcomes is weighted more strongly
than the positive utility of good outcomes. One stan-
dard family of utility curves that achieves this is the one-
parameter family,

u�s� �
�1 2 s�a

a
. (13)

Note that, since we will be concerned only with maxi-
mizing utility, u�s� is arbitrary to within both additive and
multiplicative constants. For a � 1, Eq. (13) gives u �
1 2 s and maximizing utility is precisely equivalent to
minimizing loss. For a , 1, we have risk-averse utility
functions, and for a , 0 we are infinitely averse to losing
our entire investment.

Our goal now is to maximize the average utility func-
tional U �

R
p�r�u���s�r���� ddr, subject to the constraint of

fixed F, Eq. (1) [or equivalently maximize a combined
utility functional similar to Eq. (2)]. Carrying out the func-
tional derivatives and using the utility function of Eq. (13),
we find that the optimum U corresponds to

p�r�s�r��d11��d�1 2 s�r��a21 � l , (14)

where l is a Lagrange multiplier whose value can be calcu-
lated from Eq. (1). The distribution of event sizes is given
by Eq. (6) as previously, and using Eq. (14) we find that
the derivative dp�ds, which gives the principal variation
in r�s�, is

dp

ds
� l

�a 1 1�d�s 2 �1 1 1�d�
�1 2 s�as211�d . (15)

For a � 1 our utility maximization is equivalent to simple
yield maximization (HOT), so it is not surprising to ob-
serve that when we set a � 1 in the above expression
we recover our previous s2�211�d� power law. For a , 1,
we have risk-averse utility functions (COLD), which give
rise to event distributions following the s2�211�d� form for
small event sizes, but having lower probability of large
028301-3
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FIG. 2. Event size distributions for HOT and COLD regimes in
two dimensions. The dotted line is the distribution for the HOT
regime (a � 1) and the solid lines are for the COLD regime
with (top to bottom) a � 21 to 25. The distributions are not
normalized— they cannot be since they diverge at the origin.
In practice Eq. (1) provides a lower cutoff on s and makes the
distribution normalizable. Inset: the same data on log-log scales.

event sizes. When a , 0, event probability tends to zero
as s ! 1, as we would expect.

In Fig. 2 we compare the distribution of event sizes in
HOT and COLD regimes for a variety of values of the risk-
aversion parameter a. The figure shows that the COLD
distribution approaches the HOT one as a approaches 1.
For a large and negative, the HOT power law is followed
for only a small portion of the range of event sizes —about
20% in the case of a � 25.

It is worth noting that, while risk aversion truncates
the power-law behavior in the event size distribution, the
distribution of the utilities of events still follows a power
law: We find that the tail of the distribution of utilities goes
as r�u� � u2b with b � �2a 2 1��a. Note that this
exponent is independent of the system dimension d [9].

While the introduction of the utility function has reduced
the risk of large losses, the optimal utility solution does not
normally coincide with the optimal yield solution, and,
hence, we pay a cost for risk aversion in terms of yield.
For the lattice forest fire model, however, we find that the
cost paid is small [10]. For example, in a 128 3 128 two-
dimensional system with a Gaussian spark distribution, we
find numerically that the mean yield at the a � 1 optimum
(HOT) is 0.904, dropping to 0.900 for a � 23 and 0.888
for a � 25. It appears therefore that the introduction of
risk aversion garners substantial benefits in terms of the
reduction of large losses — and the complete elimination
of 100% losses —while at the same time costing us only a
few percent at most in terms of average system yield.

We conjecture that the suppression of power-law tails in
the COLD event size distribution will also make the sys-
tem more robust against the other problems mentioned in
the introduction, namely, errors in the design and changes
in the spark distribution. The truncation of the power
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law means that the largest patches in the COLD solu-
tion are considerably smaller than those in the HOT so-
lution. Thus, if a design flaw, such as a gap in one of
the firebreaks, causes two patches to merge, the resulting
combined patch is smaller also. Similarly, if the spark
distribution is changed, the size of the resulting fires is
smaller, and, hence, the effect on the average yield is not
as catastrophic as in the HOT case. (A similar conjecture
is also made in Ref. [1].)

In this Letter, we have examined in detail only the for-
est fire model, but similar principles should apply to other
problems as well. We have shown that in order to produce
power-law event size distribution, the HOT model requires
the auxiliary assumption of risk neutrality. If humans are
risk averse they will tend to prefer COLD designs, although
this does not necessarily mean that HOT designs never oc-
cur. It might be, for instance, that blind evolutionary pro-
cesses of the type found in natural systems would simply
optimize yield, without risk aversion. On the other hand,
COLD designs are more robust to rare events than HOT
designs, and therefore might be selected for on long time
scales. Of course, in the real world, imperfect designs that
fail to optimize either yield or utility are always a possi-
bility also.
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