Artificial Intelligence (AI) is often defined as the next general purpose technology (GPT) with profound economic and societal consequences. We examine how strongly four patent AI classification methods reproduce the GPT-like features of (1) intrinsic growth, (2) generality, and (3) innovation complementarities. Studying US patents from 1990-2019, we find that the four methods (keywords, scientific citations, WIPO, and USPTO approach) vary in classifying between 3-17% of all patents as AI. The keyword-based approach demonstrates the strongest intrinsic growth and generality despite identifying the smallest set of AI patents. The WIPO and science approaches generate each GPT characteristic less strikingly, whilst the USPTO set with the largest number of patents produces the weakest features. The lack of overlap and heterogeneity between all four approaches emphasises that the evaluation of AI innovation policies may be sensitive to the choice of classification method.


Hötte, K., Tarannum, T., Verendel, V. & Bennett, L. (2022). 'Exploring Artificial Intelligence as a General Purpose Technology with Patent Data'. Working paper, 21st April 2022